定義在R上的函數(shù)f(x)滿足:f'(x)>1-f(x),f(0)=6,f′(x)是f(x)的導(dǎo)函數(shù),則不等式exf(x)>ex+5(其中e為自然對數(shù)的底數(shù))的解集為(  )
A、(0,+∞)
B、(-∞,0)∪(3,+∞)
C、(-∞,0)∪(1,+∞)
D、(3,+∞)
考點:導(dǎo)數(shù)的運算,其他不等式的解法
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:構(gòu)造函數(shù)g(x)=exf(x)-ex,(x∈R),研究g(x)的單調(diào)性,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可求解
解答: 解:設(shè)g(x)=exf(x)-ex,(x∈R),
則g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f'(x)>1-f(x),
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定義域上單調(diào)遞增,
∵exf(x)>ex+5,
∴g(x)>5,
又∵g(0)=e0f(0)-e0=6-1=5,
∴g(x)>g(0),
∴x>0,
∴不等式的解集為(0,+∞)
故選:A.
點評:本題考查函數(shù)單調(diào)性與奇偶性的結(jié)合,結(jié)合已知條件構(gòu)造函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的漸近線方程為y=±
3
x,且過點M(-1,3),則該雙曲線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(m2-m-5)xm-1是冪函數(shù),且當(dāng)x∈(0,+∞)時f(x)是增函數(shù).則實數(shù)m=( 。
A、3或-2B、-2
C、3D、-3或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,3,4},B={a,b,c},f:A→B為集合A到集合B的一個函數(shù),那么該函數(shù)的值域C的不同情況有( 。
A、7種B、4種C、8種D、12種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f:x→x2是集合A到集合B={0,1,4}的一個映射,則集合A中的元素個數(shù)最多有(  )
A、3個B、4個C、5個D、6個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

冪函數(shù)f(x)的圖象過點(
3
,3),若函數(shù)g(x)=f(x)+1在區(qū)間[m,2]上的值域是[1,5],則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(
3
x+φ)(0<φ<π),若函數(shù)f(x)-f′(x)是奇函數(shù),則φ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:
52x-23•5x-50=0;
lg
5x+5
=1-
1
2
lg(2x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,
m
=(cosA,cosC),
n
=(
3
c-2b,
3
a),且
m
n

(1)求角A的大小;
(2)若a=b,且BC邊上的中線AM的長為
7
,求邊a的值.

查看答案和解析>>

同步練習(xí)冊答案