2.某地有居民100000戶,其中普通家庭99000戶,高收入家庭1000戶,從普通家庭中以簡單隨機(jī)抽樣方式抽取990戶,從高收入家庭中以簡單隨機(jī)抽樣方式抽取100戶進(jìn)行調(diào)查,發(fā)現(xiàn)共有120戶家庭擁有3套或3套以上住房,其中普通家庭40戶,高收入家庭80戶,依據(jù)這些數(shù)據(jù)并結(jié)合所掌握的統(tǒng)計(jì)知識,你認(rèn)為該地?fù)碛?套或3套以上住房的家庭所占比例的合理估計(jì)是4.8%.

分析 首先根據(jù)擁有3套或3套以上住房的家庭所占的比例,得出100 000戶中居民中擁有3套或3套以上住房的戶數(shù),它除以100 000得到的值,為該地?fù)碛?套或3套以上住房的家庭所占比例的合理估計(jì).

解答 解:該地?fù)碛?套或3套以上住房的家庭可以估計(jì)有:99000×$\frac{40}{990}$+1000×$\frac{80}{100}$=4800戶,
所以所占比例的合理估計(jì)是4800÷100000=4.8%,
故答案為:4.8%.

點(diǎn)評 本題分層抽樣問題的運(yùn)用,首先要注意分層抽樣的方法與特點(diǎn),進(jìn)而根據(jù)合理估計(jì)的計(jì)算方法,得到答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北省高二文上第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

正數(shù)滿足,則的最大值為

A. B. C.1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=cosx,若存在實(shí)數(shù)x1,x2,…,xm(m≥2,m∈N)滿足條件0≤x1<x2<…<xm≤6π,且|f(x1)-f(x2)|+…+|f(xm-1)-f(xm)|=12,則m的最小值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)z1,z2是復(fù)數(shù),則下列結(jié)論中正確的是( 。
A.若${z_1}^2+{z_2}^2>0$,則 ${z_1}^2>-{z_2}^2$
B.$|{{z_1}-{z_2}}|=\sqrt{{z_1}^2+{z_2}^2-4{z_1}{z_2}}$
C.${z_1}^2+{z_2}^2=0?{z_1}={z_2}$
D.|z1|2=|$\overline{{z}_{1}}$|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求證:$\sqrt{3}$+$\sqrt{5}$>$\sqrt{2}$+$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=x3-3x的單調(diào)遞減區(qū)間為( 。
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)是(-∞,+∞)上的增函數(shù),a,b∈R,對命題“若a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).”
(1)寫出其逆命題,判斷其真假
(2)寫出其逆否命題,判斷其真假,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=4sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為π,將函數(shù)f(x)的圖象上的每個點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變得到函數(shù)g(x)的圖象.
(1)求函數(shù)f(x)的對稱中心的坐標(biāo)及f(x)的遞增區(qū)間;
(2)求函數(shù)g(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北省高二理上第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,正方形所在的平面與△所在的平面交于,平面,且

(1)求證:平面

(2)求證:平面平面

查看答案和解析>>

同步練習(xí)冊答案