已知三棱錐P—ABC中,PC⊥底面ABC,AB=BC,

D、F分別為AC、PC的中點(diǎn),DE⊥AP于E.
(1)求證:AP⊥平面BDE;                
(2)求證:平面BDE⊥平面BDF;
(3)若AE∶EP=1∶2,求截面BEF分三棱錐
P—ABC所成兩部分的體積比.
(Ⅰ)證明見解析(Ⅱ)證明見解析(Ⅲ)兩部分體積的比為1∶2或2∶1
(1)∵PC⊥底面ABC,BD平面ABC,∴PC⊥BD.
由AB=BC,D為AC的中點(diǎn),得BD⊥AC.又PC∩AC=C,∴BD⊥平面PAC.又PA平面、PAC,∴BD⊥PA.由已知DE⊥PA,DE∩BD=D,∴AP⊥平面BDE.
(2)由BD⊥平面PAC,DE平面PAC,得BD⊥DE.由D、F分別為AC、PC的中點(diǎn),得DF//AP.
由已知,DE⊥AP,∴DE⊥DF. BD∩DF=D,∴DE⊥平面BDF.
DE平面BDE,∴平面BDE⊥平面BDF.
(3)設(shè)點(diǎn)E和點(diǎn)A到平面PBC的距離分別為h1和h2.則
h1∶h2=EP∶AP=2∶3,

故截面BEF分三棱錐P—ABC所成兩部分體積的比為1∶2或2∶1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖,四面體ABCD中,O是BD的中點(diǎn),
ABD和BCD均為等邊三角形,AB=2,AC=。
(1)求證:AO⊥平面BCD;(2)求二面角A—BC—D的大;
(3)求O點(diǎn)到平面ACD的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直二面角D—AB—E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)
為CE上的點(diǎn),且BF⊥平面ACE.
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的余弦值;
(Ⅲ)求點(diǎn)D到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是正方形,底面, 點(diǎn)的中點(diǎn),,且交于點(diǎn) .
(I)求證:平面
(II)求二面角的余弦值大;
(III)求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在三棱錐S,,,。
(1)證明。
(2)求側(cè)面與底面所成二面角的大小。
(3)求異面直線SC與AB所成角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正四棱錐的側(cè)棱長為,側(cè)棱與底面所成的角為,則該棱錐的體積為(   )
A.3B.6 C.9D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正三棱柱中,,,點(diǎn)、分別在棱、上,且
(Ⅰ)求平面與平面所成銳二面角的大。
(Ⅱ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知長方體
直線與平面所成的角為,垂直
的中點(diǎn).
(1)求異面直線所成的角;
(2)求平面與平面所成的二面角;
(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如右放置在水平面上的組合體由直三棱柱與正三棱錐組成,其中,.它的正視圖、俯視圖、從左向右的側(cè)視圖的面積分別為,,
(Ⅰ)求直線與平面所成角的正弦;
(Ⅱ)在線段上是否存在點(diǎn),使平面.若存在,確定點(diǎn)的位置;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案