已知函數(shù).
(1)若對于區(qū)間內(nèi)的任意,總有成立,求實數(shù)的取值范圍;
(2)若函數(shù)在區(qū)間內(nèi)有兩個不同的零點,求:
①實數(shù)的取值范圍; ②的取值范圍.
(1);(2).
解析試題分析:(1)分離參數(shù),若對于區(qū)間內(nèi)的任意,總有成立,得,再求出的最大值即可;
(2)先去絕對值,當時,方程化為,時,無解;時,;
當時,方程化為,,而其中,故在區(qū)間內(nèi)至多有一解;
綜合。ⅲ┛芍,且 ,得.
試題解析:(1),
記,易知在上遞增,在上遞減,
∴,∴即可 (5分)
(2)①。時,方程化為,時,無解;時,;
ⅱ)時,方程化為,,而其中,故在區(qū)間內(nèi)至多有一解;
綜合。ⅲ┛芍,,且時,方程有一解,故;時,方程也僅有一解,令,得,所以實數(shù)的取值范圍是; (10分)
②方程的兩解分別為,,
(14分)
考點:(1)絕對值,不等式的恒成立問題;(2)函數(shù)與方程,函數(shù)的零點
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)定義在上,對任意的,,且.
(1)求,并證明:;
(2)若單調(diào),且.設(shè)向量,對任意,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司以每噸10萬元的價格銷售某種產(chǎn)品,每年可售出該產(chǎn)品1000噸,若將該產(chǎn)品每噸的價格上漲x%,則每年的銷售數(shù)量將減少,該產(chǎn)品每噸的價格上漲百分之幾,可使銷售的總金額最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某校要建一個面積為450平方米的矩形球場,要求球場的一面利用舊墻,其他各面用鋼筋網(wǎng)圍成,且在矩形一邊的鋼筋網(wǎng)的正中間要留一個3米的進出口(如圖).設(shè)矩形的長為米,鋼筋網(wǎng)的總長度為米.
(1)列出與的函數(shù)關(guān)系式,并寫出其定義域;
(2)問矩形的長與寬各為多少米時,所用的鋼筋網(wǎng)的總長度最小?
(3)若由于地形限制,該球場的長和寬都不能超過25米,問矩形的長與寬各為多少米時,所用的鋼筋網(wǎng)的總長度最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(2)若為定義域上的“局部奇函數(shù)”,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
要在墻上開一個上半部為半圓形、下部為矩形的窗戶(如圖所示),在窗框為定長的條件下,要使窗戶能夠透過最多的光線,窗戶應(yīng)設(shè)計成怎樣的尺寸?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
市場營銷人員對過去幾年某商品的價格及銷售數(shù)量的關(guān)系作數(shù)據(jù)分析發(fā)現(xiàn)有如下規(guī)律:該商品的價格每上漲x%(x>0),銷售數(shù)量就減少kx%(其中k為正常數(shù)).目前該商品定價為每個a元,統(tǒng)計其銷售數(shù)量為b個.
(1)當k=時,該商品的價格上漲多少,才能使銷售的總金額達到最大?
(2)在適當?shù)臐q價過程中,求使銷售總金額不斷增加時k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某地方政府在某地建一座橋,兩端的橋墩相距m米,此工程只需建兩端橋墩之間的橋面和橋墩(包括兩端的橋墩).經(jīng)預(yù)測,一個橋墩的費用為256萬元,相鄰兩個橋墩之間的距離均為x,且相鄰兩個橋墩之間的橋面工程費用為(1+)x萬元,假設(shè)所有橋墩都視為點且不考慮其他因素,記工程總費用為y萬元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當m=1280米時,需要新建多少個橋墩才能使y最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的零點;
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com