A. | $\frac{20}{3}$ | B. | $\frac{42}{5}$+2$\sqrt{2}$ | C. | $\frac{136}{15}$ | D. | $\frac{27}{5}$+2$\sqrt{2}$ |
分析 令$\frac{y}{x}$=k,由線性規(guī)劃求得:$\frac{2}{5}$≤k≤2,將$\frac{2x^2+y^2}{xy}$變形為$\frac{2x}{y}$+$\frac{y}{x}$=$\frac{2}{k}$+k,則易求$\frac{2x^2+y^2}{xy}$的最大值與最小值.
解答 解:由約束條件$\left\{\begin{array}{l}x-y-1≤0\\ 2x+y-4≥0\\ y≤2\end{array}\right.$,作出可行域如圖,
令$\frac{y}{x}$=k,由線性規(guī)劃得到:$\frac{2}{5}$≤k≤2,
令z=$\frac{2x^2+y^2}{xy}$=$\frac{2x}{y}$+$\frac{y}{x}$=$\frac{2}{k}$+k.
當k=$\frac{2}{5}$時,zmin=$\frac{27}{5}$,zmax=2$\sqrt{2}$,
則$\frac{2x^2+y^2}{xy}$的最大值與最小值的和為:$\frac{27}{5}$+2$\sqrt{2}$,
故選:D.
點評 本題主要考查線性規(guī)劃的應(yīng)用,確定平面區(qū)域的位置,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | -$\frac{9}{2}$ | C. | 20 | D. | -20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{16}$a2 | B. | $\frac{\sqrt{3}}{32}$a2 | C. | $\frac{\sqrt{3}}{16}$a2 | D. | $\frac{\sqrt{6}}{8}$a2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com