已知f(n)=數(shù)學(xué)公式+數(shù)學(xué)公式+…+數(shù)學(xué)公式,則f(n)中共有________項(xiàng).

n2-n+1
分析:由f(n)=++…+的解析式特點(diǎn),它每一項(xiàng)的分母n,n+1,n+2,…,n2組成等差數(shù)列,且首項(xiàng)為n,公差為1,最后一項(xiàng)為n2,可以求出它的項(xiàng)數(shù)是多少.
解答:因?yàn)閒(n)=++…+,我們觀察f(n)解析式的組成特點(diǎn),是由,,,…,組成,其中每一項(xiàng)的分母n,n+1,n+2,…,n2組成等差數(shù)列,且首項(xiàng)為n,公差為1,最后一項(xiàng)為n2;所以,它的項(xiàng)數(shù)為n2-n+1,即為f(n)的項(xiàng)數(shù).
故答案為:n2-n+1.
點(diǎn)評(píng):本題考查了等差數(shù)列通項(xiàng)公式的應(yīng)用,在通項(xiàng)公式an=a1+(n-1)d中,四個(gè)數(shù)an,a1,n,d,若已知三個(gè),可求第四個(gè).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(n)=cos
4
(n∈N*),則f(1)+f(2)+f(3)+…+f(100)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,則f(n+1)=( 。
A、f(n)++
1
2(n+1)
B、f(n)++
1
2n+1
+
1
2(n+1)
C、f(n)-
1
2(n+1)
D、f(n)+
1
2n+1
-
1
2(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

10、已知f(n)=1+3+5+…+(2n-5),且n是大于2的正整數(shù),則f(10)=
64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足:a1=1,an+1=
1
16
(1+4an+
1+24an
)(n∈N*)

(1)求a2,a3;  
(2)令bn=
1+24an
,求數(shù)列{bn}的通項(xiàng)公式;
(3)已知f(n)=6an+1-3an,求證:f(1)•f(2)…f(n)>
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(n)=sin
2
,n∈N,則f(1)+f(2)+…+f(100)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案