【題目】某品牌手機廠商推出新款的旗艦機型,并在某地區(qū)跟蹤調(diào)查得到這款手機上市時間(第周)和市場占有率()的幾組相關(guān)數(shù)據(jù)如下表:
(1)根據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)根據(jù)上述線性回歸方程,預(yù)測在第幾周,該款旗艦機型市場占有率將首次超過(最后結(jié)果精確到整數(shù)).
參考公式:,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】超市為了防止轉(zhuǎn)基因產(chǎn)品影響民眾的身體健康,要求產(chǎn)品在進(jìn)入超市前必須進(jìn)行兩輪轉(zhuǎn)基因檢測,只有兩輪都合格才能銷售,否則不能銷售.已知某產(chǎn)品第一輪檢測不合格的概率為,第二輪檢測不合格的概率為,兩輪檢測是否合格相互沒有影響.
(1)求該產(chǎn)品不能銷售的概率;
(2)如果產(chǎn)品可以銷售,則每件產(chǎn)品可獲利50元;如果產(chǎn)品不能銷售,則每件產(chǎn)品虧損60元.已知一箱中有產(chǎn)品4件,記一箱產(chǎn)品獲利元,求的分布列,并求出均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.
(1)證明:平面.
(2)若,當(dāng)三棱錐的體積最大時,求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線,的直角坐標(biāo)方程;
(2)判斷曲線,是否相交,若相交,請求出交點間的距離;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a、b、c,且.
(1)求角A;
(2)若△ABC外接圓的面積為4π,且△ABC的面積,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】你知道嗎,生產(chǎn)甲流H1N1流感疫苗的最主要原材料居然是雞蛋!不過這可不是一種普通的雞蛋,而是一種原產(chǎn)于美國的海蘭白雞蛋.工人們首先在強光照射下,挑選出“受過精”的雞蛋,未“受過精”的雞蛋只能作為普通食用蛋走上市場,這個過程叫做“照檢”照檢挑選出來的雞蛋被送到疫苗生產(chǎn)車間,先經(jīng)過嚴(yán)格的消毒,然后這些雞蛋里面被植入由世衛(wèi)組織提供的甲流毒株,這些接受了毒株的雞蛋將被放置在特殊環(huán)境的車間里,使得毒株在雞蛋里迅速生長,大約3天后,就“成熟”了.這時雞蛋轉(zhuǎn)到另一車間進(jìn)行毒株的“收獲”.雞蛋里的羊水是我們需要的所謂的“病毒收獲液”,剩下的蛋殼和未發(fā)育完整的小雞將被高溫消毒后送到其他企業(yè),制成飼料.病毒收獲液里含有我們需要的抗病毒成分,再依次經(jīng)過了滅活、純化、裂解后,就得到了我們需要的甲流疫苗了.下面是以上整個生產(chǎn)過程的流程圖,則圖中的①②位置上應(yīng)分別填上( )
A.消毒、消毒B.挑選、消毒C.消毒、裂解D.消毒、挑選
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)相鄰兩對稱軸間的距離為,若將的圖象先向左平移個單位,再向下平移1個單位,所得的函數(shù)為奇函數(shù).
(1)求的解析式,并求的對稱中心;
(2)若關(guān)于的方程在區(qū)間上有兩個不相等的實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】排成一排的10名學(xué)生生日的月份均不相同.有名教師,依次挑選這些學(xué)生參加個興趣小組,每名學(xué)生恰被一名教師挑選,且保持學(xué)生的排序不變,每名教師挑出的學(xué)生必須滿足生日的月份是逐漸增加或逐漸減少的(挑選一名或兩名學(xué)生也認(rèn)為是逐漸增加或逐漸減少的),每名教師盡可能多地選學(xué)生.對于學(xué)生所有可能的排序,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且,其中為奇函數(shù),為偶函數(shù)。若關(guān)于x的方程上在有解,則實數(shù)a的取值范圍是______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com