【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100棵種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差攝氏度 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.
(1)若選取的3組數(shù)據(jù)恰好是連續(xù)天的數(shù)據(jù)(表示數(shù)據(jù)來自互不相鄰的三天),求的分布列及期望:
(2)根據(jù)12月2日至4日數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程.由所求得線性回歸方稻得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?
附:參考公式:.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為發(fā)揮體育在核心素養(yǎng)時代的獨特育人價值,越來越多的中學已將某些體育項目納入到學生的必修課程,甚至關(guān)系到是否能拿到畢業(yè)證.某中學計劃在高一年級開設游泳課程,為了解學生對游泳的興趣,某數(shù)學研究性學習小組隨機從該校高一年級學生中抽取了100人進行調(diào)查,其中男生60人,且抽取的男生中對游泳有興趣的占,而抽取的女生中有15人表示對游泳沒有興趣.
(1)試完成下面的列聯(lián)表,并判斷能否有的把握認為“對游泳是否有興趣與性別有關(guān)”?
有興趣 | 沒興趣 | 合計 | |
男生 | |||
女生 | |||
合計 |
(2)已知在被抽取的女生中有6名高一(1)班的學生,其中3名對游泳有興趣,現(xiàn)在從這6名學生中隨機抽取3人,求至少有2人對游泳有興趣的概率.
(3)該研究性學習小組在調(diào)查中發(fā)現(xiàn),對游泳有興趣的學生中有部分曾在市級和市級以上游泳比賽中獲獎,如下表所示.若從高一(8)班和高一(9)班獲獎學生中各隨機選取2人進行跟蹤調(diào)查,記選中的4人中市級以上游泳比賽獲獎的人數(shù)為,求隨機變量的分布列及數(shù)學期望.
班級 | |||||||||||
市級比賽 獲獎人數(shù) | 2 | 2 | 3 | 3 | 4 | 4 | 3 | 3 | 4 | 2 | |
市級以上比賽獲獎人數(shù) | 2 | 2 | 1 | 0 | 2 | 3 | 3 | 2 | 1 | 2 |
0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是甲、乙兩名運動員某賽季一些場次得分的莖葉圖,據(jù)圖可知以下說法正確的是 _____.(填序號)
①甲運動員的成績好于乙運動員;②乙運動員的成績好于甲運動員;
③甲、乙兩名運動員的成績沒有明顯的差異;④甲運動員的最低得分為0分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com