【題目】已知向量 =( sin ,1), =(cos ,cos2 ).
(Ⅰ)若 =1,求cos( ﹣x)的值;
(Ⅱ)記f(x)= ,在△ABC中,A、B、C的對邊分別為a、b、c,且滿足(2a﹣c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

【答案】解:(Ⅰ) ∵


(Ⅱ)∵(2a﹣c)cosB=bcosC
∴2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA
∵sinA>0
∴cosB=
∵B∈(0,π),







【解析】(Ⅰ)利用向量的數(shù)量積公式列出方程求出 ,利用二倍角的余弦公式求出要求的式子的值.(Ⅱ)利用三角形中的正弦定理將等式中的邊轉(zhuǎn)化為角的正弦值,利用三角形的內(nèi)角和為180°化簡等式,求出角B,求出角A的范圍,求出三角函數(shù)值的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,,分別是角A,B,C的對邊,且.

(1)求角的值;

(2)已知函數(shù),將的圖像向左平移個(gè)單位長度后得到函數(shù)的圖像,求的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線 l1和l2 是異面直線,l1在平面 α內(nèi),l2在平面β內(nèi),l是平面α與平面β的交線,則下列命題正確的是( )
A.l與l1 , l2都不相交
B.l與l1 , l2都相交
C.l至多與l1 , l2中的一條相交
D.l至少與l1 , l2中的一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)也是橢圓的一個(gè)焦點(diǎn),的公共弦的長為.

(1)求的方程;

(2)過點(diǎn)的直線相交于,兩點(diǎn),與相交于兩點(diǎn),且同向

)若,求直線的斜率

)設(shè)在點(diǎn)處的切線與軸的交點(diǎn)為,證明:直線繞點(diǎn)旋轉(zhuǎn)時(shí),總是鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為一簡單組合體,其底面ABCD為正方形,棱PD與EC均垂直于底面ABCD,PD=2EC,N為PB的中點(diǎn),求證:

(1)平面EBC∥平面PDA;
(2)NE⊥平面PDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心為C的圓經(jīng)過點(diǎn)A(0,2)和B(1,1),且圓心C在直線l:x+y+5=0上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若P(x,y)是圓C上的動(dòng)點(diǎn),求3x﹣4y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a=2,A=45°,若此三角形有兩解,則b的取值范圍是(
A.(2,2
B.(2,+∞)
C.(﹣∞,2)
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率.以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形的周長為8,面積為

(Ⅰ)求橢圓的方程;

(Ⅱ)若點(diǎn)為橢圓上一點(diǎn),直線的方程為,求證:直線與橢圓有且只有一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點(diǎn)在軸上,且橢圓的焦距為2.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)的直線與橢圓交于兩點(diǎn),過軸且與橢圓交于另一點(diǎn), 為橢圓的右焦點(diǎn),求證:三點(diǎn)在同一條直線上.

查看答案和解析>>

同步練習(xí)冊答案