不用計(jì)算器求值:
(1)log3
1
3
+lg25+lg4+7log72
;
(2)(
32
×
3
)6+(
2
2
)
4
3
-4(
16
49
)-
1
2
+20150
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用對(duì)數(shù)的運(yùn)算法則即可得出;
(2)利用指數(shù)的運(yùn)算法則即可得出.
解答: 解:(1)原式=-1+lg100+2
=-1+2+2
=3.
(2)原式=22×33+2
3
4
×
4
3
-4×(
4
7
)2×(-
1
2
)
+1
=108+2-7+1
=104.
點(diǎn)評(píng):本題考查了指數(shù)與對(duì)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,有下列結(jié)論:
①若A>B,則sinA>sinB;
②若c2<a2+b2,則△ABC為銳角三角形;
③若a,b,c成等差,則sinA+sinC=2sin(A+C);
④若a,b,c成等比,則cosB的最小值為
1
2

其中結(jié)論正確的是
 
.(填上全部正確的結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)-2≤x≤2,則函數(shù)y=4x-2×2x+5的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)函數(shù)f(x)=2x+1+m的圖象不過(guò)第二象限時(shí),m的取值范圍是( 。
A、m≥2B、m≤-2
C、m>2D、m<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=(m2-m-1)xm是冪函數(shù),則f(x)一定( 。
A、是偶函數(shù)
B、是奇函數(shù)
C、在x∈(-∞,0)上單調(diào)遞減
D、在x∈(0,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-1
2x+1

(1)判斷函數(shù)f(x)的奇偶性,并證明.
(2)求函數(shù)f(x)的單調(diào)性及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若(a2+c2-b2)tanB=
3
ac,則角B的值為( 。
A、
π
6
B、
π
3
C、
π
6
6
D、
π
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2-4x-5>0},B={x|a≤x<a+4},若A?B.
(1)求∁RA值.
(2)求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx+x2+ax(a∈R)
(1)若函數(shù)f(x)有一個(gè)極大值和極小值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)已知A(x1,f(x1))B(x2,f(x2)(x1≠x2)是函數(shù)f(x)在x∈[1,+∞)的圖象上的任意兩點(diǎn),且滿足
f(x1)-f(x2)
x1-x2
>2,求a的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案