1.下列三句話按“三段論”模式,小前提是( 。
①y=cosx(x∈R)是三角函數(shù);
②三角函數(shù)是周期函數(shù);
③y=cosx(x∈R)是周期函數(shù).
A.B.C.D.①或③

分析 根據(jù)三段論”的排列模式:“大前提”→“小前提”⇒“結(jié)論”,分析即可得到正確的次序.

解答 解:根據(jù)“三段論”:“大前提”→“小前提”⇒“結(jié)論”可知:
①y=cosx(x∈R )是三角函數(shù)是“小前提”;
②三角函數(shù)是周期函數(shù)是“大前提”;
③y=cosx(x∈R )是周期函數(shù)是“結(jié)論”;
故選:A

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是演繹推理的基本方法:大前提一定是一個(gè)一般性的結(jié)論,小前提表示從屬關(guān)系,結(jié)論是特殊性結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在四棱錐E-ABCD中,△ADE是正三角形,側(cè)面ADE⊥底面ABCD,AB∥DC,BD=2DC=4,AD=3,AB=5.
(Ⅰ)求證:BD⊥AE;
(Ⅱ)求二面角B-AE-D的正切值;
(Ⅲ)求三棱錐C-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ是常數(shù),A>0,ω>0)的部分圖象如圖所示,則下列結(jié)論:①將f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,所得到的函數(shù)是偶函數(shù):②f(0)=1;③最小正周期為π;④$f(\frac{12π}{11})<f(\frac{14π}{13})$;⑤$f(x)=-f(\frac{5π}{3}-x)$.其中正確的結(jié)論有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)是定義在R上的偶函數(shù),且 f(2)=0,當(dāng)x>0時(shí),有xf′(x)-f(x)>0恒成立,則不等式f(x)<0的解集為( 。
A.(-∞,-2)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)∪(0,2)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在兩個(gè)正數(shù)a,b之間插入一個(gè)數(shù)x,可使得a,x,b成等差數(shù)列,若插入兩個(gè)數(shù)y,z,可使得a,y,z,b成等比數(shù)列,求證:x+1≥$\sqrt{(y+1)(z+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列函數(shù)中,圖象的一部分符合右圖的是( 。
A.$y=sin(x+\frac{π}{6})$B.$y=sin(2x-\frac{π}{6})$C.$y=sin(2x+\frac{π}{6})$D.$y=sin(2x+\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.一半徑為4m的水輪(如圖),水輪圓心O距離水面2m,已知水輪每分鐘轉(zhuǎn)動(dòng)4圈,如果當(dāng)水輪上點(diǎn)P從水中浮現(xiàn)時(shí)(圖中點(diǎn)P0)開(kāi)始計(jì)時(shí).
(1)將點(diǎn)P距離水面的高度h(m)表示為時(shí)間t(s)的函數(shù);
(2)在水輪轉(zhuǎn)動(dòng)的一圈內(nèi),有多長(zhǎng)時(shí)間點(diǎn)P距水面的高度超過(guò)4m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)a>0,b>0,且a+b=$\frac{1}{a}$+$\frac{1}$.證明:
(1)設(shè)$M=\frac{1}{a+1}+\frac{1}{b+1}$,$N=\frac{a}{a+1}+\frac{b+1}$,求證M=N
(2)a2+a<2與b2+b<2不可能同時(shí)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在區(qū)間(0,2)內(nèi)隨機(jī)取出兩個(gè)數(shù)x,y,則1,x2,y能作為三角形三條邊的概率為( 。
A.$\frac{{\sqrt{3}+1}}{4}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{{3-\sqrt{3}}}{4}$D.$\frac{{3-\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案