分析 (1)由奇函數(shù)的定義,以及分段函數(shù)的解法得到a,b,c.
(2)由復(fù)合函數(shù)化簡(jiǎn),得到恒成立問(wèn)題.
(3)考查恒成立以及最值問(wèn)題,由單調(diào)性得到結(jié)論.
解答 (1)∵g(x)為奇函數(shù)
∴g(0)=0.∴m=0
∴當(dāng)x≥0時(shí),g(x)=-x2+2x
當(dāng)x<0時(shí),f(-x)=-x2-2x,
∴f(x)=x2+2x
∴b=2,c=0
∴b+c=2
(2)f(f(x))=x,則f(x)=x
∵f(x)=x無(wú)實(shí)根
∴f(f(x))=x無(wú)實(shí)根
(3)∵sinθ∈[-1,1],
∴$\frac{2}{sinθ}∈(-∞,-2]∪[2,+∞)$,
∵$\left\{\begin{array}{l}{f(-2)≥0}\\{f(2)≥0}\end{array}\right.$
∴$\left\{\begin{array}{l}{4-2b+c≥0}\\{4+2b+c≥0}\end{array}\right.$
∴c≥-4
又f(x)在(-∞,-2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,
∴f(3)=1
9+3b+c=1
∴b,c滿足c≥-4且3b+c=-8
點(diǎn)評(píng) 本題考查奇函數(shù)的定義,分段函數(shù),復(fù)合函數(shù)化簡(jiǎn),恒成立以及最值問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | -$\frac{π}{6}$ | $\frac{π}{3}$ | $\frac{5π}{6}$ | $\frac{4π}{3}$ | $\frac{11π}{6}$ | $\frac{7π}{3}$ | $\frac{17π}{6}$ |
y | -1 | 1 | 3 | 1 | -1 | 1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{(5π-6\sqrt{3})^{2}}{18}$ | B. | $\frac{(5π+6\sqrt{3})^{2}}{18}$ | C. | $\frac{{π}^{2}}{18}$ | D. | $\frac{{π}^{2}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com