(2007•肇慶二模)設函數(shù)f(x)=2cos2x+2
3
sinxcosx-1(x∈R)的最大值為M,最小正周期為T.
(Ⅰ)求M及T;
(Ⅱ)寫出f(x)的單調區(qū)間;
(Ⅲ)10個互不相等的正數(shù)xi滿足f(xi)=M,且xi<10π(i=1,2,…,10),求x1+x2+…+x10的值.
分析:(I)利用二倍角、輔助角公式化簡函數(shù),可得M及T;
(Ⅱ)利用正弦函數(shù)的單調性,可寫出f(x)的單調區(qū)間;
(Ⅲ)由f(xi)=2,可得2xi+
π
6
=2kπ+
π
2
,xi=kπ+
π
6
(k∈Z)
,從而可得結論.
解答:解:∵f(x)=2cos2x+2
3
sinxcosx-1
=
3
sin2x+cos2x
=2sin(2x+
π
6
)
(4分)
(Ⅰ)M=2,T=
2
;                                       (6分)
(Ⅱ)f(x)的單調增區(qū)間為[kπ-
π
3
,kπ+
π
6
](k∈Z)
,(8分)
f(x)的單調減區(qū)間為[kπ+
π
6
,kπ+
3
](k∈Z)
;         (10分)
(Ⅲ)∵f(xi)=2,
2xi+
π
6
=2kπ+
π
2
,xi=kπ+
π
6
(k∈Z)
,(12分)
又0<xi<10π(i=1,2,…,10),
x1+x2+…+x10=(0+1+2+…+9)π+10×
π
6
=
140
3
π
.(14分)
點評:本題考查三角函數(shù)的化簡,考查三角函數(shù)的性質,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2007•肇慶二模)已知向量
a
=(1,2),
b
=(2,x),且
a
b
=-1
,則x的值等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•肇慶二模)命題“?x∈R,x2-2x+4≤0”的否定為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•肇慶二模)已知兩組數(shù)據x1,x2,…,xn與y1,y2,…,yn,它們的平均數(shù)分別是
.
x
.
y
,則新的一組數(shù)據2x1-3y1+1,2x2-3y2+1,…,2xn-3yn+1的平均數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•肇慶二模)在空間中,有如下命題:
①互相平行的兩條直線在同一個平面內的射影必然是互相平行的兩條直線;
②若平面α∥平面β,則平面α內任意一條直線m∥平面β;
③若平面α與平面β的交線為m,平面α內的直線n⊥直線m,則直線n⊥平面β.
其中正確命題的個數(shù)為(  )個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•肇慶二模)若x∈[-
π
2
,0]
,則函數(shù)f(x)=cos(x+
π
6
)-cos(x-
π
6
)+
3
cosx
的最小值是( 。

查看答案和解析>>

同步練習冊答案