5.如圖,將正整數(shù)排成一個(gè)三角形數(shù)陣:

按照以上排列的規(guī)律,第20行從左向右的第2個(gè)數(shù)為192.

分析 先找到數(shù)的分布規(guī)律,求出第n-1行結(jié)束的時(shí)候一共出現(xiàn)的數(shù)的個(gè)數(shù),再求第n行從左向右的第2個(gè)數(shù)即可得出第20行從左向右的第2個(gè)數(shù).

解答 解:由排列的規(guī)律可得,第n-1行結(jié)束的時(shí)候排了1+2+3+…+n-1=$\frac{1}{2}$n(n-1)個(gè)數(shù).
所以第n行從左向右的第2個(gè)數(shù)$\frac{1}{2}$n(n-1)+2,
所以第20行從左向右的第2個(gè)數(shù)為$\frac{1}{2}×20×19+2$=192,
故答案為:192.

點(diǎn)評 此題主要考查了數(shù)字的變化規(guī)律,借助于一個(gè)三角形數(shù)陣考查數(shù)列的應(yīng)用,是道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知直角梯形ACEF與等腰梯形ABCD所在的平面互相垂直,EF∥AC,EF═$\frac{1}{2}$AC,EC⊥AC,AD=DC=CB=CE=$\frac{1}{2}$AB=1.
(Ⅰ)證明:BC⊥AE;
(Ⅱ)求二面角D-BE-F的余弦值;
(Ⅲ)判斷直線DF與平面BCE的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)x,y滿足$\left\{\begin{array}{l}2x+y≥4\\ x-y≥1\\ x-2y≤2\end{array}\right.$,則z=x+y的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a<b<0,則下列不等式不成立的是( 。
A.$\frac{1}{a}>\frac{1}$B.2a>2bC.|a|>|b|D.a3<b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=2sin2($\frac{w}{2}$x)+sin(wx-$\frac{π}{6}$)(w>0),且f(x)的最小正周期為π,則實(shí)數(shù)w=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,正方體ABCD-A1B1C1D1中,E是棱BC的中點(diǎn),F(xiàn)是側(cè)面BCC1B1上的動點(diǎn),且A1F∥平面AD1E,則直線A1F與平面BCC1B1所成的角的正切值t構(gòu)成的集合是( 。
A.{t|${\frac{{2\sqrt{5}}}{5}$≤t≤$\frac{{2\sqrt{3}}}{3}}\right.}$}B.{t|{2≤t≤2$\sqrt{3}}$}C.{t|${\frac{{2\sqrt{5}}}{5}$≤t≤2$\sqrt{3}$}D.{{t|{2≤t≤2$\sqrt{2}}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若$\frac{1}{a}$<$\frac{1}$<0,則下列不等式中不正確的是(  )
A.a+b<abB.$\frac{a}$+$\frac{a}$>2C.ab<b2D.a2<b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p:若x>0,則函數(shù)y=x+$\frac{1}{2x}$的最小值為1,命題q:若x>1,則x2+2x-3>0,則下列命題是真命題的是( 。
A.p∨qB.p∧qC.(¬p)∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,PD⊥底面ABCD,PD=1,PB=PC=BC=$\sqrt{2}$,點(diǎn)E,F(xiàn)分別是PA,BC的中點(diǎn).
(Ⅰ)證明:EF∥平面PCD;
(Ⅱ)證明:PB⊥CD;
(Ⅲ)求二面角A-PB-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案