【題目】已知,函數(shù),

(Ⅰ)求函數(shù)處的切線;

(Ⅱ)若函數(shù)處有最大值,求實數(shù)a的取值范圍.

【答案】(Ⅰ)(Ⅱ)

【解析】

I)根據(jù)導(dǎo)數(shù)的幾何意義求切線斜率,從而寫出切線的方程;(Ⅱ)利用先必要,后充分的方法縮小參數(shù)范圍,減少分類討論的情形,并通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而判斷并求解函數(shù)在給定區(qū)間內(nèi)的最值.

解:(Ⅰ)因為,

,又有,

故函數(shù)處的切線為

(Ⅱ)由知函數(shù)的圖象過定點,且,又因為函數(shù)處有最大值,則,即

當(dāng)時,上恒成立,上單調(diào)遞增,所以處有最大值,符合題意;

當(dāng)時,,令,則,,從而知上單調(diào)遞增,上單調(diào)遞減,上單調(diào)遞增,故函數(shù)上的最大值為

又因為,所以,即,令,則上單調(diào)遞增,且,可得,則

綜上,實數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生平均每天體育鍛煉時間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

平均每天鍛煉的時間/分鐘

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均體育鍛煉時間在的學(xué)生評價為“鍛煉達(dá)標(biāo)”.

(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

鍛煉不達(dá)標(biāo)

鍛煉達(dá)標(biāo)

合計

20

110

合計

并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?

(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出10人,進(jìn)行體育鍛煉體會交流,

(i)求這10人中,男生、女生各有多少人?

(ii)從參加體會交流的10人中,隨機選出2人作重點發(fā)言,記這2人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.

參考公式:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知無窮數(shù)列的前項中的最大項為,最小項為,設(shè).

1)若,求數(shù)列的通項公式;

2)若,求數(shù)列的前項和;

3)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1是直角梯形,,,,,.為折痕將折起,使點到達(dá)的位置,且,如圖2.

1)證明:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某學(xué)校研究性課題《什么樣的活動最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計圖(每個受訪者都只能在問卷的5個活動中選擇一個),以下結(jié)論錯誤的是( 。

A. 回答該問卷的總?cè)藬?shù)不可能是100

B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多

C. 回答該問卷的受訪者中,選擇“學(xué)校團(tuán)委會宣傳”的人數(shù)最少

D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”,國時期吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形若直角三角形中較小的銳角,現(xiàn)在向該大止方形區(qū)域內(nèi)隨機地投擲一枚飛鏢,則飛鏢落在陰影部分的概率是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正四面體的棱長為2,是棱上一動點,若,則線段的長度的最小值是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形與等邊所在平面互相垂直,,,分別是線段的中點.

1)求證:平面;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到生產(chǎn)3000臺某產(chǎn)品的三種部件的訂單,每臺產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件),已知每個工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2.該企業(yè)計劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為kk為正整數(shù)).

1)設(shè)生產(chǎn)部件的人數(shù)為,分別寫出完成三種部件生產(chǎn)需要的時間;

2)假設(shè)這三種部件的生產(chǎn)同時開工,試確定正整數(shù)k的值,使完成訂單任務(wù)的時間最短,并給出時間最短時具體的人數(shù)分組方案.

查看答案和解析>>

同步練習(xí)冊答案