設(shè)f(x),g(x)在[a,b]上可導(dǎo),且f′(x)>g′(x),則當(dāng)a<x<b時,有(  )
A.f(x)>g(x)
B.f(x)<g(x)
C.f(x)+g(a)>g(x)+f(a)
D.f(x)+g(b)>g(x)+f(b)
C
∵f'(x)>g'(x),∴[f(x)-g(x)]'>0,
∴f(x)-g(x)在[a,b]上是增函數(shù).
∴f(a)-g(a)<f(x)-g(x),
即f(x)+g(a)>g(x)+f(a).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;
(3)過坐標(biāo)原點(diǎn)作曲線的切線,證明:切點(diǎn)的橫坐標(biāo)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(其中為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)定義:若函數(shù)在區(qū)間上的取值范圍為,則稱區(qū)間為函數(shù)的“域同區(qū)間”.試問函數(shù)上是否存在“域同區(qū)間”?若存在,求出所有符合條件的“域同區(qū)間”;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(I) 當(dāng),求的最小值;
(II) 若函數(shù)在區(qū)間上為增函數(shù),求實(shí)數(shù)的取值范圍;
(III)過點(diǎn)恰好能作函數(shù)圖象的兩條切線,并且兩切線的傾斜角互補(bǔ),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=+ln x.
(1)當(dāng)a=時,求f(x)在[1,e]上的最大值和最小值;
(2)若函數(shù)g(x)=f(x)-x在[1,e]上為增函數(shù),求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)yx (a>0)的單調(diào)增區(qū)間為________,單調(diào)減區(qū)間為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=(3-x2)ex的單調(diào)遞增區(qū)間是(  )
A.(-∞,0)
B.(0,+∞)
C.(-∞,-3)和(1,+∞)
D.(-3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x2-ax+3在(0,1)上為減函數(shù),函數(shù)g(x)=x2-aln x在(1,2)上為增函數(shù),則a的值等于(  )
A.1 B.2
C.0D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=x2-ln x的單調(diào)遞減區(qū)間為________.

查看答案和解析>>

同步練習(xí)冊答案