已知雙曲線x2﹣y2=1的左、右頂點分別為A1、A2,動直線l:y=kx+m與圓x2+y2=1相切,且與雙曲線左、右兩支的交點分別為P1(x1,y1),P2(x2,y2).

(1)求k的取值范圍,并求x2﹣x1的最小值;

(2)記直線P1A1的斜率為k1,直線P2A2的斜率為k2,那么k1•k2是定值嗎?證明你的結論.

考點:

圓與圓錐曲線的綜合.

專題:

綜合題.

分析:

(1)由l與圓相切,知m2=1+k2,由,得(1﹣k2)x2﹣2mkx﹣(m2+1)=0,所以由此能求出k的取值范圍和x2﹣x1的最小值.

(2)由已知可得A1,A2的坐標分別為(﹣1,0),(1,0),=.由此能證明k1•k2是定值.

解答:

解:(1)∵l與圓相切,∴∴m2=1+k2(2分)

,得(1﹣k2)x2﹣2mkx﹣(m2+1)=0,∴,∴k2<1,∴﹣1<k<1,故k的取值范圍為(﹣1,1).(5分)

由于,

∵0≤k2<1∴當k2=0時,x2﹣x1取最小值.(7分)

(2)由已知可得A1,A2的坐標分別為(﹣1,0),(1,0),

,∴=(10分)

==

==,

由m2﹣k2=1,∴為定值.(14分)

點評:

本題主要考查橢圓標準方程,簡單幾何性質,直線與橢圓的位置關系,雙曲線的簡單性質等基礎知識.考查運算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉化思想.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標軸上,離心率為
2
,且過點(4,-
10
)
,則雙曲線的標準方程是
x2-y2=6
x2-y2=6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-4y2=4上一點P到雙曲線的一個焦點的距離等于6,那么P點到另一焦點的距離等于
10或2
10或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-
y2
3
=1
的兩個焦點分別為F1、F2,點P為雙曲線上一點,且∠F1PF2=90°,則△F1PF2的面積等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線x2-4y2=4上一點P到雙曲線的一個焦點的距離等于6,那么P點到另一焦點的距離等于______.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省無錫市江陰市成化中學高二(上)周練數(shù)學試卷(7)(解析版) 題型:填空題

已知雙曲線x2-4y2=4上一點P到雙曲線的一個焦點的距離等于6,那么P點到另一焦點的距離等于   

查看答案和解析>>

同步練習冊答案