設(shè)
a
b
是任意的兩個(gè)向量,λ∈R,給出下面四個(gè)結(jié)論:
①若
a
b
共線,則
b
a
;
②若
b
=-λ
a
,則
a
b
共線;③若
a
b
,則
a
b
共線;
④當(dāng)
b
≠0時(shí),
a
b
共線的充要條件是有且只有一個(gè)實(shí)數(shù)λ=λ1,使得
a
1
b

其中正確的結(jié)論有( 。
A.①②B.①③C.①③④D.②③④
對(duì)于①當(dāng)
a
=
0
時(shí),滿足兩向量共線但不存在λ使
b
a
故①錯(cuò)
對(duì)于②③根據(jù)數(shù)乘運(yùn)算的定義知正確;
對(duì)于④由兩向量共線的充要條件得到對(duì).
故②③④正確.
故選D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
是任意的兩個(gè)向量,λ∈R,給出下面四個(gè)結(jié)論:
①若
a
b
共線,則
b
a
;
②若
b
=-λ
a
,則
a
b
共線;③若
a
b
,則
a
b
共線;
④當(dāng)
b
≠0時(shí),
a
b
共線的充要條件是有且只有一個(gè)實(shí)數(shù)λ=λ1,使得
a
1
b

其中正確的結(jié)論有( 。
A、①②B、①③
C、①③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•福建)設(shè)S,T是R的兩個(gè)非空子集,如果存在一個(gè)從S到T的函數(shù)y=f(x)滿足:
(i)T={f(x)|x∈S};(ii)對(duì)任意x1,x2∈S,當(dāng)x1<x2時(shí),恒有f(x1)<f(x2),那么稱這兩個(gè)集合“保序同構(gòu)”,現(xiàn)給出以下3對(duì)集合:
①A=N,B=N*;
②A={x|-1≤x≤3},B={x|-8≤x≤10};
③A={x|0≤x≤1},B=R.
其中,“保序同構(gòu)”的集合對(duì)的序號(hào)是
①②③
①②③
.(寫出“保序同構(gòu)”的集合對(duì)的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:離心率e=
5
-1
2
的橢圓為“黃金橢圓”,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的兩個(gè)焦點(diǎn)分別為F1(-c,0)、F2(c,0)(c>0),P為橢圓E上的任意一點(diǎn).
(1)試證:若a,b,c不是等比數(shù)列,則E一定不是“黃金橢圓”;
(2)設(shè)E為“黃金橢圓”,問:是否存在過點(diǎn)F2、P的直線l,使l與y軸的交點(diǎn)R滿足
RP
=-2
PF2
?若存在,求直線l的斜率k;若不存在,請(qǐng)說明理由;
(3)設(shè)E為“黃金橢圓”,點(diǎn)M是△PF1F2的內(nèi)心,連接PM并延長(zhǎng)交F1F2于N,求
|PM|
|PN|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•福建)設(shè)S,T是R的兩個(gè)非空子集,如果存在一個(gè)從S到T的函數(shù)y=f(x)滿足:(i)T={f(x)|x∈S};(ii)對(duì)任意x1,x2∈S,當(dāng)x1<x2時(shí),恒有f(x1)<f(x2),那么稱這兩個(gè)集合“保序同構(gòu)”,以下集合對(duì)不是“保序同構(gòu)”的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案