已知橢圓的中心在原點(diǎn),離心率為
2
2
,若F為左焦點(diǎn),A為右頂點(diǎn),B為短軸的一個(gè)端點(diǎn),求tan∠ABF的值.
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:首先,根據(jù)橢圓中的參數(shù)的意義,可以設(shè)OF=c,OA=a,OB=b,然后,根據(jù)tan∠ABF=-tan(∠BAF+∠BFA),求解tan∠ABF的值.
解答: 解:設(shè)OF=c,OA=a,OB=b,
∴tan∠BAF=
OB
OA
=
b
a
,
tan∠BFA=
OB
OC
=
b
c
,
∵tan∠ABF=-tan(∠BAF+∠BFA)
=-
b
a
+
b
c
1-
b2
ac

=-
bc+ab
ac-b2

∵e2=
c2
a2
=
1
2
,
∴a2=2c2
∵b2=a2-c2=c2
∴ca=
2
b2,
∴tan∠ABF=-
b2+
2
b2
2
b2-b2
=-3-2
2

∴tan∠ABF的值-3-2
2
點(diǎn)評(píng):本題重點(diǎn)考查了橢圓的簡(jiǎn)單幾何性質(zhì)、兩角和與差的正切公式等,屬于中檔題.理解清晰橢圓中的參數(shù)的幾何意義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

OA
=
a
,
OB
=
b
,則∠AOB的平分線上的向量
OC
為( 。
A、
a
|
a
|
+
b
|
b
|
B、
|
b
|
a
+|
a
|
b
|
a
|+|
b
|
C、λ(
a
|
a
|
+
b
|
b
|
),λ由
DC
確定
D、
a
+
b
|
a
+
b
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=(m-1)2x m2-4m+2在(0,+∞)上單調(diào)遞增,函數(shù)g(x)=2x-k.
(Ⅰ)求m的值;
(Ⅱ)當(dāng)x∈[1,2]時(shí),記f(x),g(x)的值域分別為集合A,B,若A∪B⊆A,求實(shí)數(shù)K的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,b>0,求證:
a+b
2
-
ab
a2+b2
2
-
a+b
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐E-ABCD中,ABCD是矩形,平面EAB⊥平面ABCD,AE=EB=BC=2,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;
(2)求三棱錐D-AEC的體積;
(3)求直線DE與AC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)為定義在區(qū)間I上的函數(shù).若對(duì)I上任意兩點(diǎn)x1,x2(x1≠x2),總有f(
x1+x2
2
)<
1
2
[f(x1)+f(x2)],則稱f(x)為I上的嚴(yán)格下凸函數(shù).若f(x)為I上的嚴(yán)格下凸函數(shù),其充要條件為:對(duì)任意x∈I有f″(x)>0成立(f″(x)是函數(shù)f(x)導(dǎo)函數(shù)的導(dǎo)函數(shù)),則以下結(jié)論正確的有
 

①f(x)=
2x+2014
3x+7
,x∈[0,2014]是嚴(yán)格下凸函數(shù).
②設(shè)x1,x2∈(0,
π
2
)且x1≠x2,則有tan(
x1+x2
2
)>
1
2
(tanx1+tanx2
③f(x)=-x3+3x2在區(qū)間[1,2014]上是嚴(yán)格下凸函數(shù).
④f(x)=
1
6
x3+sinx,(x∈(
π
6
,
π
3
))是嚴(yán)格下凸函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a=2”是“直線ax+2y=0與直線x+y=1平行”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四面體ABCD中,E,F(xiàn)分別為AB,CD的中點(diǎn),過EF任作一個(gè)平面
α分別與直線BC,AD相交于點(diǎn)G,H,下列判斷中:
①對(duì)于任意的平面α,都有S△EFG=S△EFH;
②存在一個(gè)平面α0,使得點(diǎn)G在線段BC上,點(diǎn)H在線段AD的延長(zhǎng)線上;
③對(duì)于任意的平面α,都有直線GF,EH,BD相交于同一點(diǎn)或相互平行;
④對(duì)于任意的平面α,當(dāng)G,H在線段BC,AD上時(shí),幾何體AC-EGFH的體積是一個(gè)定值.
其中正確的序號(hào)是( 。
A、①③④B、③④
C、②③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=logax(a>0,且a≠1)的圖象如圖所示,則下列函數(shù)圖象正確的是(  )
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案