【題目】對于下列命題: ①在△ABC中,若sin2A=sin2B,則△ABC為等腰三角形;
②已知a,b,c是△ABC的三邊長,若a=2,b=5, ,則△ABC有兩組解;
③設(shè) , , ,則a>b>c;
④將函數(shù) 圖象向左平移 個單位,得到函數(shù) 圖象.
其中正確命題的序號是

【答案】③④
【解析】解:①、由于sin2A=sin2B,則2A=2B,或2A+2B=π,∴A=B,或A+B= ,所以△ABC為等腰三角形或直角三角形,故此命題錯; ②、由正弦定理知, ,∴ ,顯然無解,故此命題錯;
③、∵ = , ,∴a>b>c,此命題正確;
④、由于 = ,所以此命題正確.
所以答案是 ③④.
【考點(diǎn)精析】通過靈活運(yùn)用命題的真假判斷與應(yīng)用和函數(shù)y=Asin(ωx+φ)的圖象變換,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系;圖象上所有點(diǎn)向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓直線

(1)求證:對,直線與圓總有兩個不同的交點(diǎn);

(2)若的值;

(3)當(dāng)取最小值時,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若,關(guān)于的不等式在區(qū)間上恒成立,求的取值范圍;

Ⅱ)若解關(guān)于的不等式;

Ⅲ)若,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知兩條公路的交匯點(diǎn)處有一學(xué)校,現(xiàn)擬在兩條公路之間的區(qū)域內(nèi)建一工廠,在兩公路旁(異于點(diǎn))處設(shè)兩個銷售點(diǎn),且滿足,(千米),(千米),設(shè).

(1)試用表示,并寫出的范圍;

(2)當(dāng)為多大時,工廠產(chǎn)生的噪聲對學(xué)校的影響最。垂S與學(xué)校的距離最遠(yuǎn)).

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為選拔選手參加“中國漢字聽寫大全”,某中學(xué)舉行了一次“漢字聽寫大賽”活動.為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(Ⅰ)求樣本容量n和頻率分布直方圖中的x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績在80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“中國漢字聽寫大會”,每次抽取1人,求在第1次抽取的成績低于90分的前提下,第2次抽取的成績?nèi)缘陀?0分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=lnx﹣x+a+1
(1)若存在 x∈(0,+∞)使得f(x)≥0成立,求a的范圍;
(2)求證:當(dāng)x>1時,在(1)的條件下, 成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過A(0,1)和且與x軸相切的圓只有一個,求的值及圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:52,54,54,56,56,56,55,55,55,55.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加6后所得數(shù)據(jù),則AB兩樣本的下列數(shù)字特征對應(yīng)相同的是(  )

A. 眾數(shù) B. 平均數(shù)

C. 中位數(shù) D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C (a>b>0)的一個頂點(diǎn)為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時,求k的值.

查看答案和解析>>

同步練習(xí)冊答案