5.三張卡片上分別寫有數(shù)字1、2、3,將它們排成一行,恰好排成順序為“321”的概率為$\frac{1}{6}$.

分析 求出基本事件的個數(shù),從而求出滿足條件的事件的概率即可.

解答 解:所有的可能有${A}_{3}^{3}$=6種,
設(shè)“恰好排成順序為“321””為事件A,
故滿足條件的概率是:P(A)=$\frac{1}{6}$;
故答案為:$\frac{1}{6}$.

點評 本題考查概率的計算,考查學(xué)生的計算能力,確定基本事件的個數(shù)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列說法中正確的有③
①刻畫一組數(shù)據(jù)集中趨勢的統(tǒng)計量有極差、方差、標(biāo)準(zhǔn)差等;刻畫一組數(shù)據(jù)離散程度統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)等.
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大.
③有10個鬮,其中一個代表獎品,10個人按順序依次抓鬮來決定獎品的歸屬,則摸獎的順序?qū)χ歇劼蕸]有影響.
④向一個圓面內(nèi)隨機地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機試驗的數(shù)學(xué)模型是古典概型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=$\sqrt{2}$cosx在x=$\frac{π}{4}$處的切線方程為$x-y-1-\frac{π}{4}=0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知直線x-y-2=0及直線x-y-6=0截圓C所得的弦長均為10,則圓C的面積是27π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.2010年上海世博會某接待站有10名學(xué)生志愿者,其中4名女生,現(xiàn)派3名志愿者分別帶領(lǐng)3個不同的參觀團,3名帶領(lǐng)志愿者中同時有男生和女生,共有576種帶領(lǐng)方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|x2-5x+4≤0},B={x|x2-7x+10≤0},C={x|x≤a}.
(1)在集合A中任取一個元素x,求事件“x∈A∩B”的概率;
(2)命題p:x∈A,命題q:x∈C,若q是p的必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知a>b>0,且a,b,-2這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則a+b=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足a1=2,an+1=λan+2n(n∈N*),λ為非零常數(shù)
(1)當(dāng)λ=1時,求數(shù)列{an}的通項公式;
(2)當(dāng)λ=11時,記bn=an+$\frac{1}{9}$×2n,證明:數(shù)列{bn}是等比數(shù)列;并求此時數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=sin(ax+\frac{π}{3})(a>0)$圖象相鄰兩對稱軸間的距離為4,則a的值是( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊答案