10.已知x,y滿足不等式組$\left\{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}\right.$,則滿足條件的P(x,y)表示的平面區(qū)域的面積等于( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{\sqrt{2}}{2}$

分析 作出不等式對(duì)應(yīng)的平面區(qū)域,根據(jù)平面區(qū)域的形狀,求出交點(diǎn)坐標(biāo),結(jié)合三角形的面積公式,建立方程即可得到結(jié)論.

解答 解:不等式組對(duì)應(yīng)的平面區(qū)域如圖:
則對(duì)應(yīng)區(qū)域?yàn)槿切蜲AB.
由$\left\{\begin{array}{l}{x=0}\\{x-2y+3=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=0}\\{y=\frac{3}{2}}\end{array}\right.$,即B(0,$\frac{3}{2}$),
由$\left\{\begin{array}{l}{2x-y=0}\\{x-2y+3=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
則|OB|=$\frac{3}{2}$,
則三角形的面積S=$\frac{1}{2}$×$\frac{3}{2}$×1=$\frac{3}{4}$,
故選:C

點(diǎn)評(píng) 本題主要考查二元一次不等式組表示平面區(qū)間,考查學(xué)生的作圖能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知正四棱錐的底面邊長為$\sqrt{2}$,高為1,則這個(gè)正四棱錐的外接球的表面積為4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)兩點(diǎn)A、B的坐標(biāo)為A(-1,0)、B(1,0),若動(dòng)點(diǎn)M滿足直線AM與BM的斜率之積為-2,則動(dòng)點(diǎn)M的軌跡方程為( 。
A.x2-$\frac{{y}^{2}}{2}$=1B.x2-$\frac{{y}^{2}}{2}$=1(x≠±1)C.x2+$\frac{{y}^{2}}{2}$=1D.x2+$\frac{{y}^{2}}{2}$=1(x≠±1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知四面體ABCD各棱長都等于1,點(diǎn)E,F(xiàn)分別是AB,CD的中點(diǎn),則異面直線AF與CE所成角的余弦值為(  )
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合M={x|(x+2)(x-3)≤0},N={-3,-1,1,3,5},則M∩N=( 。
A.{1,3}B.{-3,-1,1}C.{-3,1}D.{-1,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率$e=\frac{{\sqrt{2}}}{2}$,原點(diǎn)到過點(diǎn)A(a,0),B(0,-b)的直線的距離是$\frac{{\sqrt{6}}}{3}$.
(1)求橢圓C的方程;
(2)是否存在直線y=kx+m(k≠0)交橢圓于不同的兩點(diǎn)C、D,且C、D都在以B為圓心的圓上,若存在,求出m的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且${S_n}=\frac{1}{2}-\frac{1}{2}{a_n}$,則an=(  )
A.$\frac{1}{3}•{(\frac{1}{2})^{n-1}}$B.$\frac{1}{2}•{(\frac{2}{3})^{n-1}}$C.$2•{(\frac{1}{3})^n}-\frac{1}{3}$D.${(\frac{1}{3})^n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow{a}$=(2,1,4),$\overrightarrow$=(1,0,2),且$\overrightarrow{a}$+$\overrightarrow$與k$\overrightarrow{a}$-$\overrightarrow$互相垂直,則k的值是( 。
A.1B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{15}{31}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某工廠對(duì)某產(chǎn)品的產(chǎn)量與成本的資料分析后有如下數(shù)據(jù):
產(chǎn)量x(千件)2356
成本y(萬元)78912
則該產(chǎn)品的成本y與產(chǎn)量x之間的線性回歸方程為$\stackrel{∧}{y}$=1.10x+4.60.

查看答案和解析>>

同步練習(xí)冊答案