已知三角形ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(3,2),B(1,3),C(2,5),l為BC邊上的高所在直線.
(1)求直線l的方程;
(2)直線l與橢圓相交于D、E兩點(diǎn),△CDE是以C(2,5)為直角頂點(diǎn)的等腰直角三角形,求該橢圓的方程.
【答案】分析:(1)利用相互垂直的直線的斜率之間的關(guān)系即可得到kl,再利用點(diǎn)斜式即可得出;
(2)利用等腰三角形的性質(zhì)可得底邊DE的中點(diǎn)F的坐標(biāo),下面轉(zhuǎn)化為中點(diǎn)弦的問(wèn)題,把直線l的方程與橢圓的方程聯(lián)立及利用根與系數(shù)的關(guān)系即可得出.
解答:解:(1)kBC=2,因?yàn)閘為BC邊上的高所在直線,∴l(xiāng)⊥BC,∴kl•kBC=-1,解得,
直線l的方程為:y-2=(x-3),即:x+2y-7=0
(2)過(guò)C作CF⊥DE,依題意,知F為DE中點(diǎn),直線CF可求得為:2x-y+1=0.
聯(lián)立兩直線方程可求得:F(1,3),
由橢圓方程與直線ED聯(lián)立方程組,
可得:(a2+4b2)y2-28b2y+49b2-a2b2=0,化為,
又CF=,所以,|DE|=2=2,即=2
所以,=4,即36-4=4,解得:
所以,所求方程為:
點(diǎn)評(píng):本題綜合考查了直線與橢圓相交問(wèn)題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關(guān)系、等腰三角形的性質(zhì)、中點(diǎn)問(wèn)題、相互垂直的直線斜率之間的關(guān)系等基礎(chǔ)知識(shí)與基本技能,考查了推理能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形ABC的三個(gè)內(nèi)角A,B,C成等差數(shù)列,且AB=1,BC=4,則中線AD的長(zhǎng)為
A、
3
B、1
C、
2
D、
3
+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形△ABC的三個(gè)頂點(diǎn)是A(4,0),B(6,7),C(0,8).
(1)求BC邊上的高所在直線的方程;
(2)求BC邊上的中線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湛江二模)已知三角形ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(3,2),B(1,3),C(2,5),l為BC邊上的高所在直線.
(1)求直線l的方程;
(2)直線l與橢圓
x2
a2
+
y2
b2
=1
相交于D、E兩點(diǎn),△CDE是以C(2,5)為直角頂點(diǎn)的等腰直角三角形,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且b2+c2-bc=a2;
c
b
=
1
2
+
3
.則tanB=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形ABC的三個(gè)頂點(diǎn)是A(4,0),B(6,7),C(0,3),求:
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊的垂直平分線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案