在△ABC中,已知數(shù)學(xué)公式,則B的值是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:利用正弦定理化簡(jiǎn)已知的等式,整理后再利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式變形,通過(guò)sinA不為0,得到cosB的值,由B為三角形的內(nèi)角,求出B的值.
解答:根據(jù)正弦定理得:=,
=,即sinBcosC=2sinAcosB-cosBsinC,
整理得:sinBcosC+cosBsinC=32inAcosB,即sin(B+C)=2sinAcosB,
又A+B+C=π,即B+C=π-A,
∴sin(B+C)=sin(π-A)=sinA,
∴sinA=2sinAcosB,又sinA≠0,
∴cosB=,又B為三角形的內(nèi)角,
B=,
故選B.
點(diǎn)評(píng):本題考查了正弦、余弦定理,兩角和與差的正弦函數(shù)公式,誘導(dǎo)公式,同角三角函數(shù)間的基本關(guān)系,基本不等式,以及三角形的面積公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知A=30°,B=120°,b=12,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知b=
2
,c=1,B=45°,求a,A,C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知高AN和BM所在直線方程分別為x+5y-3=0和x+y-1=0,邊AB所在直線方程x+3y-1=0,求直線BC,CA及AB邊上的高所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知lgsinA-lgcosB-lgsinC=lg2,則三角形一定是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知b=1,c=3,A=120°,則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案