【題目】2019年,隨著中國(guó)第一款5G手機(jī)投入市場(chǎng),5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬臺(tái),其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺(tái)的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足

1)將利潤(rùn)表示為產(chǎn)量萬臺(tái)的函數(shù);

2)當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少萬元?

【答案】(1) (2) 當(dāng)產(chǎn)量為4萬臺(tái)時(shí),公司所獲利潤(rùn)最大,最大利潤(rùn)為5600萬元.

【解析】

1)先求得總成本函數(shù),然后用求得利潤(rùn)的函數(shù)表達(dá)式.

2)用二次函數(shù)的最值的求法,一次函數(shù)最值的求法,求得當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大,且求得最大利潤(rùn).

1)由題意得.

因?yàn)?/span>

所以

2)由(1)可得,當(dāng)時(shí),.

所以當(dāng)時(shí),(萬元)

當(dāng)時(shí),,單調(diào)遞增,

所以(萬元).

綜上,當(dāng)時(shí),(萬元).

所以當(dāng)產(chǎn)量為4萬臺(tái)時(shí),公司所獲利潤(rùn)最大,最大利潤(rùn)為5600萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù).

(Ⅰ)當(dāng)時(shí),求的解集;

(Ⅱ)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a﹣(a∈R)

(Ⅰ)判斷函數(shù)f(x)在R上的單調(diào)性,并用單調(diào)函數(shù)的定義證明;

(Ⅱ)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)寫出曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn)是曲線上一點(diǎn),點(diǎn)是曲線上一點(diǎn),的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,在五面體ABCDEF中,四邊形EDCF是正方形,

(1)證明:

(2)已知四邊形ABCD是等腰梯形,且求五面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的反函數(shù),定義:若對(duì)于給定實(shí)數(shù),函數(shù))互成反函數(shù),則稱滿足和性質(zhì),若函數(shù)互為反函數(shù),則稱滿足積性質(zhì)

1)判斷函數(shù)是否滿足“1和性質(zhì),并說明理由;

2)求所有滿足“2和性質(zhì)的一次函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場(chǎng)調(diào)查,某商品每噸的價(jià)格為萬元時(shí),該商品的月供給量為噸,;月需求量為噸,,當(dāng)該商品的需求量大于供給量時(shí),銷售量等于供給量;當(dāng)該商品的需求量不大于供給量時(shí),銷售量等于需求量,該商品的月銷售額等于月銷售量與價(jià)格的乘積.

1)已知,若某月該商品的價(jià)格為x=7,求商品在該月的銷售額(精確到1元);

2)記需求量與供給量相等時(shí)的價(jià)格為均衡價(jià)格,若該商品的均衡價(jià)格不低于每噸6萬元,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第26屆世界大學(xué)生夏季運(yùn)動(dòng)會(huì)將于2011年8月12日到23日在深圳舉行 ,為了搞好接待工作,組委會(huì)在某學(xué)院招募了12名男志愿者和18名女志愿者。將這30名志愿者的身高編成如右所示的莖葉圖(單位:cm):

若身高在175cm以上(包括175cm)定義為“高個(gè)子”,身高在175cm以下(不包括175cm)定義為“非高個(gè)子”,且只有“女高個(gè)子”才擔(dān)任“禮儀小姐”。

(1)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中提取5人,再?gòu)倪@5人中選2人,那么至少有一人是“高個(gè)子”的概率是多少?

(2)若從所有“高個(gè)子”中選3名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信搶紅包”自2015年以來異常火爆,在某個(gè)微信群某次進(jìn)行的搶紅包活動(dòng)中,若所發(fā)紅包的總金額為8元,被隨機(jī)分配為1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于3元的概率是 ( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案