【題目】設P是拋物線y2=4x上的一個動點,F(xiàn)為拋物線的焦點,記點P到點A(-1,1)的距離與點P到直線x= - 1的距離之和的最小值為M,若B(3,2),記|PB|+|PF|的最小值為N,則M+N= ______________
【答案】
【解析】
當P、A、F三點共線時,點P到點A(-1,1)的距離與點P到直線x= - 1距離之和最小,由兩點間的距離公式可得M;
當P、B、F三點共線時,|PB|+|PF|最小,由點到直線的距離公式可得.
可得拋物線y2=4x的焦點F(1,0),準線方程為x=﹣1,
∴點P到點A(﹣1,1)的距離與點P到直線x=﹣1的距離之和
等于P到點A(﹣1,1)的距離與點P到焦點F的距離之和,
當P、A、F三點共線時,距離之和最小,且M=|AF|,
由兩點間的距離公式可得M=|AF|;
由拋物線的定義可知|PF|等于P到準線x=﹣1的距離,
故|PB|+|PF|等于|PB|與P到準線x=﹣1的距離之和,
可知當P、B、F三點共線時,距離之和最小,
最小距離N為3﹣(﹣1)=4,
所以M+N=,
故答案為.
科目:高中數(shù)學 來源: 題型:
【題目】某學校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預賽和決賽兩個階段.表為10名學生的預賽成績,其中有三個數(shù)據(jù)模糊.
在這10名學生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則( )
A. 2號學生進入30秒跳繩決賽 B. 5號學生進入30秒跳繩決賽
C. 8號學生進入30秒跳繩決賽 D. 9號學生進入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)程為(為參數(shù)),設直線與的交點為,當變化時點的軌跡為曲線.
(1)求出曲線的普通方程;
(2)以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,點為曲線的動點,求點到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為F,且過點A (2,2),橢圓的離心率為,點B為拋物線C與橢圓D的一個公共點,且.
(Ⅰ)求橢圓D的方程;
(Ⅱ)過橢圓內一點P(0,t)的直線l的斜率為k,且與橢圓C交于M,N兩點,設直線OM,ON(O為坐標原點)的斜率分別為k1,k2,若對任意k,存在實數(shù)λ,使得k1+ k2=λk,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國第一高摩天輪“南昌之星摩天輪”高度為,其中心距地面,半徑為,若某人從最低點處登上摩天輪,摩天輪勻速旋轉,那么此人與地面的距離將隨時間變化,后達到最高點,從登上摩天輪時開始計時.
(1)求出人與地面距離與時間的函數(shù)解析式;
(2)從登上摩天輪到旋轉一周過程中,有多長時間人與地面距離大于.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,圓,點是圓上一動點, 的垂直平分線與交于點.
(1)求點的軌跡方程;
(2)設點的軌跡為曲線,過點且斜率不為0的直線與交于兩點,點關于軸的對稱點為,證明直線過定點,并求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列中,已知,對任意都成立,數(shù)列的前n項和為.
(1)若是等差數(shù)列,求k的值;
(2)若,,求;
(3)是否存在實數(shù)k,使數(shù)列是公比不為1的等比數(shù)列,且任意相鄰三項,,按某順序排列后成等差數(shù)列?若存在,求出所有k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(題文)如圖,長方形材料中,已知,.點為材料內部一點,于,于,且,. 現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點、分別在邊,上.
(1)設,試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;
(2)試確定點在上的位置,使得四邊形材料的面積最小,并求出其最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com