15.已知奇函數(shù)f(x)=x3+ax2定義域為[-1,1].
(1)求a的值;
(2)若方程f(x)=tx有三個根,求t的取值范圍.

分析 (1)根據(jù)函數(shù)的奇偶性求出a的值即可;
(2)求出f(x)的解析式,解方程,結(jié)合x的范圍,求出t的范圍即可.

解答 解:(1)∵f(x)是奇函數(shù),
∴f(-x)=-x3+ax2=-f(x)=-x3-ax2,
故a=0;
(2)由(1)f(x)=x3,x∈[-1,1],
若方程f(x)=tx有三個根,
即x(x2-t)=0,x=0,x=±$\sqrt{t}$,
故0<t≤1.

點評 本題考查了函數(shù)的奇偶性,考查函數(shù)的零點問題,是一道基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+3a,x<0\\{log_a}({x+1})+1,x≥0\end{array}$(a>0且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2-x恰好有兩個不相等的實數(shù)解,則a的取值范圍是$[{\frac{1}{3},\frac{2}{3}}]∪\left\{{\frac{3}{4}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)f(x)=2x3-ax+6的一個單調(diào)遞增區(qū)間為[1,+∞),則減區(qū)間是( 。
A.(-∞,0)B.(-1,1)C.(0,1)D.(-∞,1),(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在“心連心”活動中,5名黨員被分配到甲、乙、丙三個村子進行入戶走訪,每個村子至少安排1名黨員參加,且A,B兩名黨員必須在同一個村子的不同分配方法的總數(shù)為36.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)$f(x)=\frac{{\sqrt{x+4}+\sqrt{1-2x}}}{{{x^2}-1}}$的定義域為( 。
A.$[-4,-1)∪(-1,\frac{1}{2}]$B.[-4,-1)∪(-1,1)C.$[\frac{1}{2},1)∪(1,+∞)$D.[-4,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若角α的終邊在直線y=-3x上,則cos2α=( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.±$\frac{4}{5}$D.±$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知點P(2,0),圓C的圓心在直線x-y-5=0上且與y軸切于點M(0,-2).
(1)求圓C的標準方程;
(2)設直線ax-y+1=0與圓C交于A,B兩點,過點P的直線l垂直平分弦AB,這樣的實數(shù)a是否存在,若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(-∞,0)上單調(diào)遞增的是( 。
A.f(x)=2xB.f(x)=-$\frac{1}{x}$C.f(x)=log2|x|D.f(x)=-x2+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.命題“若x>0,則x2>0”的否定為( 。
A.存在x0>0,使得x2≤0B.若x≤0,則x2≤0
C.若x>0,則x2≤0D.存在x0>0,使得x2<0

查看答案和解析>>

同步練習冊答案