10.已知f(x)=ax-lnx,a∈R.
(1)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)是否存在實(shí)數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說明理由.

分析 (1)求出函數(shù)的導(dǎo)數(shù),求出f′(2)的值,從而求出切線方程即可;
(2)先求出函數(shù)f(x)的導(dǎo)數(shù),通過討論a的范圍,得到函數(shù)的單調(diào)區(qū)間,從而求出a的值.

解答 解:(1)∵f(x)=x-lnx,f′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$      …(1分)
∴切線的斜率是f′(2)=$\frac{1}{2}$,又切點(diǎn)是(2,2-ln2)…(2分)
∴切線的方程是:x-2y+2-2ln2=0             …(4分)
(2)由f(x)=ax-lnx,得f′(x)=a-$\frac{1}{x}$=$\frac{ax-1}{x}$,x∈(0,e],
①當(dāng)a≤0時(shí),f(x)在(0,e]上單調(diào)遞減,f(x)min=f(e)=ae-1=3,
a=$\frac{4}{e}$(舍去),所以,此時(shí)f(x)無最小值.    …(8分)
②當(dāng)0<$\frac{1}{a}$<e時(shí),f(x)在(0,$\frac{1}{a}$)上單調(diào)遞減,在($\frac{1}{a}$,e]上單調(diào)遞增,
f(x)min=f($\frac{1}{a}$)=1+lna=3,a=e2,滿足條件.       …(9分)
③當(dāng)$\frac{1}{a}$≥e時(shí),f(x)在(0,e]上單調(diào)遞減,f(x)min=f(e)=ae-1=3,a=$\frac{4}{e}$(舍去),所以,此時(shí)f(x)無最小值.            …(10分)
綜上,存在實(shí)數(shù)a=e2,使得當(dāng)x∈(0,e]時(shí)f(x)有最小值3.…(12分)

點(diǎn)評 本題考察了函數(shù)的單調(diào)性,最值問題,考察導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知銳角三角形的三邊長分別為1,2,a,則a的取值范圍是(  )
A.(3,5)B.($\sqrt{3},\sqrt{5}$)C.($\sqrt{3},5$)D.($\sqrt{5},3$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.曲線x2+y2-6x=0(y>0)與直線y=k(x+2)有公共點(diǎn),則k的取值范圍是(  )
A.k∈[-$\frac{3}{4}$,0)B.k∈(0,$\frac{4}{3}$]C.k∈(0,$\frac{3}{4}$]D.k∈[-$\frac{3}{4}$,$\frac{3}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列可能是函數(shù)f(x)=sin(2x+$\frac{π}{4}$)對稱軸的是( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{π}{8}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A,B,C所對的邊分別為a,b,c,B=$\frac{π}{3}$,且(cosA-3cosC)b=(3c-a)cosB.
(Ⅰ)求tanA的值;
(Ⅱ)若b=$\sqrt{14}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)z=1+2i(i為虛數(shù)單位),$\overrightarrow{z}$為z的共軛復(fù)數(shù),則下列結(jié)論正確的是( 。
A.$\overrightarrow{z}$的實(shí)部為-1B.$\overrightarrow{z}$的虛部為-2iC.z•$\overrightarrow{z}$=5D.$\frac{\overrightarrow{z}}{z}$=i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在三棱錐P-ABC中,△PAB是正三角形,在△ABC中,AB⊥BC,且D、E分別為AB、AC的中點(diǎn).   
(1)求證:DE∥平面PBC;
(2)求異面直線AB與PE所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知拋物線$\frac{1}{4}{y^2}=x$的焦點(diǎn)為F,點(diǎn)A(2,2),點(diǎn)P在拋物線上,則|PA|+|PF|的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.整數(shù)p>1.證明:當(dāng)x>-1且x≠0時(shí),(1+x)p>1+px.

查看答案和解析>>

同步練習(xí)冊答案