16.化簡求值:
(1)計算${6.25^{\frac{1}{2}}}-lg\frac{1}{100}+ln\sqrt{e}+{2^{1+{{log}_2}3}}$
(2)已知${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=2,求$\frac{{x+{x^{-1}}-1}}{{{x^2}+{x^{-2}}+3}}$的值.

分析 (1)利用指數(shù)函數(shù)與對數(shù)函數(shù)的運算性質(zhì)即可得出.
(2)利用乘法公式、指數(shù)函數(shù)的運算性質(zhì)即可得出.

解答 解:(1)原式=2.5+2+$\frac{1}{2}$+2×3=11.
(2)∵${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=2,∴x>0,x+x-1=2,x2+x-2=2.
∴$\frac{{x+{x^{-1}}-1}}{{{x^2}+{x^{-2}}+3}}$=$\frac{2-1}{2+3}$=$\frac{1}{5}$.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的運算性質(zhì)、乘法公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.在某市記者招待會上,需要接受本市甲、乙兩家電視臺記者的提問,兩家電視臺均有記者5人,主持人需要從這10名記者中選出4名記者提問,且這4人中,既有甲電臺記者,又有乙電視臺記者,且甲電視臺的記者不可以連續(xù)提問,則不同的提問方式的種數(shù)為( 。
A.1200B.2400C.3000D.3600

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.$y=\frac{1}{2}sin(2x-\frac{π}{3})$的對稱中心是($\frac{kπ}{2}$+$\frac{π}{6}$,0),k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=x-alnx,g(x)=-$\frac{1+a}{x}$(a∈R).
(Ⅰ)若a=1,求函數(shù)f(x)的極值;
(Ⅱ)設函數(shù)h(x)=f(x)-g(x),求函數(shù)h(x)的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間[1,e=2.71828…)上不存在x0,使得f(x0)<g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知下列命題:
①命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”;
②已知p,q為兩個命題,若“p∨q”為假命題,則“(¬p)∧(¬q)為真命題”;
③“a>2”是“a>5”的充分不必要條件;
④“若xy=0,則x=0且y=0”的逆否命題為真命題.
其中所有真命題的序號是②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.半徑為1m的圓中,60°的圓心角所對的弧的長度為( 。
A.$\frac{π}{6}$mB.$\frac{π}{3}$mC.$\frac{2π}{3}$mD.1m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}滿足:a1=3,an=an-1+2n-1(n≥2,n∈N*).
(1)求數(shù)列{an}的通項公式及前n項和Sn;
(2)令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn=b1+2b2+…+2n-1bn(n∈N*),求證:Tn<$\frac{1}{6}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知α:1≤x≤3,β:m+1≤x≤m+4,且α是β的充分條件,則實數(shù)m的取值范圍為[-1,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)的定義在(-3,3)上的奇函數(shù),當0<x<3時,f(x)的圖象如圖所示,則不等式f(x)•x≥0的解集是(-3,-1]∪[1,3).

查看答案和解析>>

同步練習冊答案