20.曲線y=(x+1)ex在點(diǎn)(0,1)處的切線方程為y=2x+1.

分析 求出導(dǎo)函數(shù)y′,根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,由直線方程的點(diǎn)斜式即可求出切線方程.

解答 解:∵y=(x+1)•ex(e為自然對(duì)數(shù)的底數(shù)),
∴y′=(x+2)ex
根據(jù)導(dǎo)數(shù)的幾何意義,則切線的斜率為y′|x=0=2,
又切點(diǎn)坐標(biāo)為(0,1),
由點(diǎn)斜式方程可得y=2x+1,
∴曲線y=(x+1)•ex(e為自然對(duì)數(shù)的底數(shù))在點(diǎn)(0,1)處的切線方程為y=2x+1.
故答案為:y=2x+1.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程.導(dǎo)數(shù)的幾何意義即在某點(diǎn)處的導(dǎo)數(shù)即該點(diǎn)處切線的斜率,解題時(shí)要注意運(yùn)用切點(diǎn)在曲線上和切點(diǎn)在切線上.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T,其范圍分為五個(gè)級(jí)別,T∈[0,2)暢通;T∈[2,4)基本暢通;  T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢绺叻鍟r(shí)段(T≥3),從某市交通指揮中心隨機(jī)選取了三環(huán)以內(nèi)的50個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖.
(Ⅰ)這50個(gè)路段為中度擁堵的有多少個(gè)?
(Ⅱ)據(jù)此估計(jì),早高峰三環(huán)以內(nèi)的三個(gè)路段至少有一個(gè)是嚴(yán)重?fù)矶碌母怕适嵌嗌伲?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB=AC,D,D1分別是線段BC,B1C1的中點(diǎn),P是線段AD上異于端點(diǎn)的點(diǎn).
(1)在平面ABC內(nèi),試作出過點(diǎn)P與平面A1BC平行的直線l,并說明理由;
(2)證明:直線l⊥平面ADD1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.命題“?x∈R,ax2-2ax+5>0恒成立”是假命題,則實(shí)數(shù)a的取值范圍是a<0,或a≥5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在等差數(shù)列{an}中,a2=4,a4+a7=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2${\;}^{{a}_{n}-2}$+n,求數(shù)列{bn}的前10項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列賦值語句正確的是(  )
A.2=xB.x=y=zC.y=x+1D.x+y=z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在函數(shù)$y=sin(x+\frac{π}{6})$圖象的對(duì)稱軸中,與原點(diǎn)距離最小的一條的方程為x=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)定義域?yàn)镽的偶函數(shù)f(x)滿足:對(duì)任意的x1,x2∈(0,+∞),(x1-x2)[f(x1)-f(x2)]>0,則f(-π)>f(3.14).(填“>”、“<”或“=”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.正方體ABCD-A1B1C1D1中,與對(duì)角線A1B成45°的棱有(  )條.
A.4B.8C.12D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案