15.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務(wù),每天安排一人,每人只參加一天,若要求甲、乙兩人至少選一人參加,且當(dāng)甲、乙兩人都參加時,他們參加社區(qū)服務(wù)的日期不相鄰,那么不同的安排種數(shù)為5040.(用數(shù)字作答)

分析 根據(jù)題意,分2種情況討論,①只有甲乙其中一人參加,②甲乙兩人都參加,由排列、組合計算可得其符合條件的情況數(shù)目,由加法原理計算可得答案.

解答 解:根據(jù)題意,分2種情況討論,
若只有甲乙其中一人參加,有C21•C64•A55=3600種情況;
若甲乙兩人都參加,有C22•A63•A42=1440種情況,
則不同的安排種數(shù)為3600+1440=5040種,
故答案為:5040.

點評 本題考查組合的應(yīng)用,要靈活運用各種特殊方法,如捆綁法、插空法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.現(xiàn)將5張連號的電影票分給甲、乙等5個人,每人一張,且甲、乙分得的電影票連號,則共有不同分法的種數(shù)為(  )
A.12B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.甘肅省瓜州縣自古就以生產(chǎn)“美瓜”面名揚中外,生產(chǎn)的“瓜州蜜瓜”有4個系列30多個品種,質(zhì)脆汁多,香甜可口,清爽宜人,含糖量達(dá)14%~19%,是消暑止渴的佳品,調(diào)查表明,蜜瓜的甜度與海拔高度,日照時長,溫差有極強的相關(guān)性,分別用x,y,z表示蜜瓜甜度與海拔高度,日照時長,溫差的相關(guān)程度,big對它們進(jìn)行量化:0表示一般,1表示良,2表示優(yōu),在用綜合指標(biāo)w=x+y+z的值平定蜜瓜的頂級,若w≥4,則為一級;若2≤w≤3,則為二級;若0≤w≤1,則為三級,今年來,周邊各省也開始發(fā)展蜜瓜種植,為了了解目前蜜瓜在周邊各省的種植情況,研究人員從不同省份隨機抽取了10塊蜜瓜種植地,得到如下結(jié)果:
種植地編號ABCDE
(x,y,z)(1,0,0)(2,2,1)(0,1,1)(2,0,2)(1,1,1)
種植地編號FGHIJ
(x,y,z)(1,1,2)(2,2,2)(0,0,1)(2,2,1)(0,2,1)
(1)若有蜜瓜種植地110塊,試估計等級為三家的蜜瓜種植地的數(shù)量;
(2)從樣本里等級為一級的蜜瓜種植地中隨機抽取兩塊,求這兩塊種植地的綜合指標(biāo)w至少有一個為4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥2}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$,若x2+y2+2x≥k恒成立,則實數(shù)k的最大值為(  )
A.40B.9C.8D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知正方體ABCD-A1B1C1D1內(nèi)有一個內(nèi)切球O,則在正方體ABCD-A1B1C1D1內(nèi)任取點M,求點M在球O內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在等比數(shù)列{an}中,a1=2,公比q=2,若am=a1a2a3a4(m∈N*),則m=(  )
A.11B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在梯形ABCD中,AD∥BC,$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=4,AC與BD相交于點E,$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,則$\overrightarrow{AE}$•$\overrightarrow{CD}$=-$\frac{16}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知x,y∈R,( 。
A.若|x-y2|+|x2+y|≤1,則${(x+\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$
B.若|x-y2|+|x2-y|≤1,則${(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$
C.若|x+y2|+|x2-y|≤1,則${(x+\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$
D.若|x+y2|+|x2+y|≤1,則${(x-\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}的公差不為0,前n項和為Sn,S5=25,S1,S2,S4成等比數(shù)列.
(1)求an與Sn
(2)設(shè)${b_n}=\frac{2n+1}{{{S_n}{S_{n+1}}}}$,求證:b1+b2+b3+…+bn<1.

查看答案和解析>>

同步練習(xí)冊答案