已知a是實數(shù),函數(shù)f(x)=x2(x-a).若f'(1)=1,求a的值及曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程.
分析:欲求出切線方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在x=-1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率,從而問題解決.
解答:解:∵f(x)=x2(x-a)=x3-ax2
∴f′(x)=3x2-2ax.
∴f′(1)=3-2a=1,→a=1;
又曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率為:
f′(1)=1,
∴曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程:
y-f(1)=1×(x-1)
即y=x-1.
點(diǎn)評:本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程等基礎(chǔ)知識,考查運(yùn)算求解能力.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a是實數(shù),函數(shù)f(x)=x2(x-a).
(Ⅰ)若f′(1)=3,求a的值及曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[0,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a是實數(shù),函數(shù)f(x)=2ax2+2x-3-a,如果函數(shù)y=f(x)在區(qū)間[-1,1]上有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a是實數(shù),函數(shù)f(x)=
43
ax3+x2-(a+5)x
,如果函數(shù)y=f(x)在區(qū)間[-1,1]上不單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a是實數(shù),函數(shù)f(x)=2ax2+2x-3-a
(1)若f(x)≤0在R上恒成立,求a的取值范圍.
(2)若函數(shù)y=f(x)在區(qū)間[-1,1]上恰有一個零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•河西區(qū)二模)已知a是實數(shù),函數(shù)f(x)=x3-(a+
32
)x2
+2ax+1
(Ⅰ)若f′(2)=4,求a的值及曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[1,4]上的最大值.

查看答案和解析>>

同步練習(xí)冊答案