如圖,斜三棱柱ABC-A1B1C1,已知側面BB1C1C與底面ABC垂直,且∠BCA=90°,∠B1BC=60°,BC=BB1=2,若二面角A-B1B-C為30°.

(Ⅰ)求證:AC上平面BB1C1C;

(Ⅱ)求AB1與平面BB1C1C所成角的正切值;

(Ⅲ)在平面AA1B1B內找一點P,使三棱錐P-BB1C為正三棱錐,并求點P到平面BB1C的距離.

解:(1)∵面BB1C1C⊥面ABC,交線為BC,

AC⊥BC,∴AC⊥面BB1C1

(Ⅱ)連B1C,由(1)知AC⊥平面BB1C1C,

∴∠CB1A就是AB1與平面BB1C1C所成的角.

取BB1中點E,連CE、AE,

在△CBB1中,BB1=BC=2,∠B1BC=60°,

∴△CBB1是正三角形,∴CE⊥BB1,

又AC⊥平面BB1C1C,.∴AE⊥BB1,

∴∠CEA為二面角A-BB1-C的平面角,∠CEA=30°

在Rt△CEA中,AC=CEtan30°=1,

∴在Rt△AB1C中,tan∠AB1C=,

(Ⅲ)在CE上取點P1,使=2,

則P1為△B1BC的重心即中心.作P1P∥AC交AE于P

∵AC⊥平面BB1C1C,∴PP1⊥面BB1C1C,

即P在平面B1C1C上的射影是△BCB1中心

∴P- BB1C為正三棱錐,且,∴PP1=

即P到平面BB1C的距離為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖,斜三棱柱ABC-A1B1C1的側面A1ACC1與底面ABC垂直,∠ABC=90°,BC=2,AC=2
3
,且AA1⊥A1C,AA1=A1C.
(1)求側棱A1A與底面ABC所成角的大;
(2)求側面A1ABB1與底面ABC所成二面角的大小;
(3)求頂點C到側面A1ABB1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,斜三棱柱ABC-A1B1C1中,A1C1⊥BC1,AB⊥AC,AB=3,AC=2,側棱與底面成60°角.
(1)求證:AC⊥面ABC1;
(2)求證:C1點在平面ABC上的射影H在直線AB上;
(3)求此三棱柱體積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,斜三棱柱ABC-A1B1C1的側面AA1C1C是面積為
3
2
的菱形,∠ACC1為銳角,側面ABB1A1⊥側面AA1C1C,且A1B=AB=AC=1.
(Ⅰ)求證:AA1⊥BC1;
(Ⅱ)求三棱錐A1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,斜三棱柱ABC-A1B1C1的底面是直角三角形,AC⊥CB,∠ABC=45°,側面A1ABB1是邊長為a的菱形,且垂直于底面ABC,∠A1AB=60°,E、F分別是AB1、BC的中點.
(1)求證EF∥平面A1ACC1
(2)求EF與側面A1ABB1所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•濰坊二模)如圖,斜三棱柱ABC-A1B1C1,側面BB1C1C⊥底面ABC,△BC1C是等邊三角形,AC⊥BC,AC=BC=4.
(1)求證:AC⊥B
C
 
1
;
(2)設D為BB1的中點,求二面角D-AC-B的余弦值.

查看答案和解析>>

同步練習冊答案