已知函數(shù)f(x)=
x2+ax+11
x+1
(a∈R),若對于任意的X∈N*,f(x)≥3恒成立,則a的取值范圍是
a≥-
8
3
a≥-
8
3
分析:由于x∈N*,可將f(x)=
x2+ax+11
x+1
≥3轉(zhuǎn)化為a≥-
8
x
-x+3,再令g(x)=-
8
x
-x+3(x∈N*),利用其單調(diào)性可求得g(x)max,從而可得答案.
解答:解:∵x∈N*
∴f(x)=
x2+ax+11
x+1
≥3恒成立?x2+ax+11≥3x+3恒成立,
∴ax≥-x2-8+3x,又x∈N*,
∴a≥-
8
x
-x+3恒成立,
∴a≥g(x)max
令g(x)=-
8
x
-x+3(x∈N*),再令h(x)=x+
8
x
(x∈N*),
∵h(yuǎn)(x)=x+
8
x
在(0,2
2
]上單調(diào)遞減,在[2
2
,+∞)上單調(diào)遞增,而x∈N*,
∴h(x)在x取距離2
2
較近的整數(shù)值時達(dá)到最小,而距離2
2
較近的整數(shù)為2和3,
∵h(yuǎn)(2)=6,h(3)=
17
3
,h(2)>h(3),
∴當(dāng)x∈N*時,h(x)min=
17
3
.又g(x)=-
8
x
-x+3=-h(x)+3,
∴g(x)max=-
17
3
+3=-
8
3

∴a≥-
8
3
點(diǎn)評:本題考查函數(shù)恒成立問題,依題意得到a≥-
8
x
-x+3是關(guān)鍵,考查轉(zhuǎn)化思想,構(gòu)造函數(shù)的思想,考查函數(shù)的單調(diào)性的應(yīng)用,綜合性強(qiáng),思維度深,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案