設f(x)是定義在[-1,1]上的奇函數,且對任意的實數a,b∈[-1,1],當a+b
≠0時,都有>0.
(1)若a>b,試比較f(a)與f(b)的大小;
(2)解不等式f(x-)<f(x-);
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)這兩個函數的定義域的交集是空集,求c的取值范圍.
解:(1)任取x1,x2∈[-1,1]且設x1<x2,由奇函數的定義和題設不等式,得
f(x2)-f(x1)=f(x2)+f(-x1)=·(x2-x1)>0,
∴f(x)在[-1,1]上是增函數.
∵a,b∈[-1,1]且a>b,∴f(a)>f(b) …………………………………4分
(2)∵f(x)是[-1,1]上的增函數
∴不等式f(x-)<f(x-)等價于不等式組
∴原不等式的解集為{x|-≤x≤}.…………………………………8分
(3)設函數g(x)、h(x)的定義域分別是P和Q,則P={x|-1≤x-c≤1}={x|c-1≤x≤c+1},Q={x|-1≤x-c2≤1}={x|c2-1≤x≤c2+1},
若P∩Q=,那么c+1<c2-1或c2+1<c-1.
解得c的取值范圍是(-∞,-1)∪(2,+∞). ………………………………12分
【解析】略
科目:高中數學 來源: 題型:
①y=3-f(x) ②y=1+ ③y=[f(x)]2 ④y=1-
A.1 B
查看答案和解析>>
科目:高中數學 來源: 題型:
(1)當x∈(1,3]時,f(x)的表達式;
(2)f(-3)及f(3.5)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
A.a<-1或a> B.-l<a<
C.a< D.a<且a≠-1
查看答案和解析>>
科目:高中數學 來源:江蘇省2010年高考預測試題數學 題型:解答題
設f(x)是定義在[0,1]上的函數,若存在x*∈(0,1),使得f(x)在[0,x*]上單調遞增,在[x*,1]上單調遞減,則稱f(x)為[0,1]上的單峰函數,x*為峰點,包含峰點的區(qū)間為含峰區(qū)間.對任意的[0,1]上的單峰函數f(x),下面研究縮短其含峰區(qū)間長度的方法.
(I)證明:對任意的∈(O,1),,若f()≥f(),則(0,)為含峰區(qū)間:若f()f(),則為含峰區(qū)間:
(II)對給定的r(0<r<0.5),證明:存在∈(0,1),滿足,使得由(I)所確定的含峰區(qū)間的長度不大于0.5+r:
(III)選取∈(O,1),,由(I)可確定含峰區(qū)間為或,在所得的含峰區(qū)間內選取,由與或與類似地可確定一個新的含峰區(qū)間,在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕對值不小于0.02,且使得新的含峰區(qū)間的長度縮短到0. 34(區(qū)間長度等于區(qū)間的右端點與左端點之差)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com