【題目】洛薩·科拉茨是德國(guó)數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1,如初始正整數(shù)為6,按照上述變換規(guī)則,我們得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,1.對(duì)科拉茨猜想,目前誰(shuí)也不能證明,更不能否定,如果對(duì)正整數(shù)按照上述規(guī)則實(shí)施變換(注:1可以多次出現(xiàn))后的第九項(xiàng)為1,則的所有可能取值的集合為_________.

【答案】.

【解析】分析:利用地9項(xiàng)為1出發(fā),按照規(guī)則,逆向逐項(xiàng)即可求出的所有可能的取值.

詳解:如果正整數(shù)按照上述規(guī)則進(jìn)行變換后的第9項(xiàng)為1,

則變換中的第項(xiàng)為,

則變換中的第7項(xiàng)為

則變換中的第6項(xiàng)為1,也可能是8,

則變換中的第5項(xiàng)為2也可能是16,

當(dāng)變換中的第5項(xiàng)為2時(shí),變換中的第4項(xiàng)是4,變換中的第3項(xiàng)是18,變換中的第2項(xiàng)為216,

當(dāng)變換中的第5項(xiàng)為16時(shí),變換中的第4項(xiàng)是325,變換中的第3項(xiàng)是6410,變換中的第2項(xiàng)為203,

變換中第2項(xiàng)為2時(shí),第1項(xiàng)為4,變換中第2項(xiàng)為16時(shí),第1項(xiàng)為325,變換中第2項(xiàng)為3時(shí),第1項(xiàng)為6,變換中第2項(xiàng)為20時(shí),第1項(xiàng)為40,變換中第2項(xiàng)為21時(shí),第1項(xiàng)為42,變換中第2項(xiàng)為128時(shí),第1項(xiàng)為256,

所以的所有取值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}共有5項(xiàng),其中a1=0,a5=2,且|ai+1﹣ai|=1,i=1,2,3,4,則滿足條件的不同數(shù)列的個(gè)數(shù)為( 。
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,,,,是棱上一點(diǎn).

1)求證:

2)若分別為、的中點(diǎn),求證://平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某程序框圖如圖所示,該程序運(yùn)行后輸出的S的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究“晚上喝綠茶與失眠”有無(wú)關(guān)系,調(diào)查了100名人士,得到下面的列聯(lián)表:

失眠

不失眠

合計(jì)

晚上喝綠茶

16

40

56

晚上不喝綠茶

5

39

44

合計(jì)

21

79

100

由已知數(shù)據(jù)可以求得:,則根據(jù)下面臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

可以做出的結(jié)論是( )

A. 在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“晚上喝綠茶與失眠有關(guān)”

B. 在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“晚上喝綠茶與失眠無(wú)關(guān)”

C. 在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“晚上喝綠茶與失眠有關(guān)”

D. 在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“晚上喝綠茶與失眠無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.若直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.

(I)求直線的普通方程與曲線的直角坐標(biāo)方程;

(II)設(shè)直線與曲線相交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C經(jīng)過(guò)、兩點(diǎn),且圓心在直線上.

(1)求圓C的方程;

(2)若直線經(jīng)過(guò)點(diǎn)且與圓C相切,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)命題:

①函數(shù)fx=2a2x-1-1的圖象過(guò)定點(diǎn)(-1);

②已知函數(shù)fx)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),fx=xx+1),若fa=-2則實(shí)數(shù)a=-12

③若loga1,則a的取值范圍是(,1);

④若對(duì)于任意xRfx=f4-x)成立,則fx)圖象關(guān)于直線x=2對(duì)稱;

⑤對(duì)于函數(shù)fx=lnx,其定義域內(nèi)任意x1x2都滿足f

其中所有正確命題的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的偶函數(shù)滿足,當(dāng)時(shí),,設(shè)函數(shù),則的圖象所有交點(diǎn)的橫坐標(biāo)之和為( ).

A. 3B. 4C. 5D. 6

查看答案和解析>>

同步練習(xí)冊(cè)答案