【題目】某地計(jì)劃在水庫(kù)建一座至多安裝3臺(tái)發(fā)電機(jī)的水電站.過去50年的水文資料顯示,水庫(kù)年入流量(年入流量:一年內(nèi)上游來(lái)水與庫(kù)區(qū)降水之和.單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨(dú)立.
(1)求未來(lái)4年中,至多有1年的年入流量超過120的概率;
(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量限制,并有如下關(guān)系:
年入流量 | |||
發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù) | 1 | 2 | 3 |
若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)發(fā)電機(jī)年凈利潤(rùn)為5000萬(wàn)元;若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)發(fā)電機(jī)年維護(hù)費(fèi)與年入流量有如下關(guān)系:
年入流量 | ||
一臺(tái)未運(yùn)行發(fā)電機(jī)年維護(hù)費(fèi) | 500 | 800 |
欲使水電站年凈利潤(rùn)最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?
【答案】(1);(2)應(yīng)安裝發(fā)電機(jī)2臺(tái).
【解析】
(1)由題意求出年入流量在3個(gè)范圍:,,的概率.由二項(xiàng)分布可得在未來(lái)4年中至多有1年的年入流量超過120的概率;
(2)記水電站年凈利潤(rùn)為(單位:萬(wàn)元).分別求安裝1臺(tái)發(fā)電機(jī)、安裝2臺(tái)發(fā)電機(jī)、安裝3臺(tái)發(fā)電機(jī)的數(shù)學(xué)期望,選擇最大的方案.
(1)依題意,,
,
由二項(xiàng)分布,在未來(lái)4年中至多有1年的年入流量超過120的概率為:
.
(2)記水電站年凈利潤(rùn)為(單位:萬(wàn)元)
①當(dāng)安裝1臺(tái)發(fā)電機(jī)時(shí).
由于水庫(kù)年入流量總大于40,所以1臺(tái)發(fā)電機(jī)運(yùn)行的概率為1.
此時(shí)的年凈利潤(rùn),;
②當(dāng)安裝2臺(tái)發(fā)電機(jī)時(shí).此時(shí),
若,則只有1臺(tái)發(fā)電機(jī)運(yùn)行,此時(shí),因此
若,則2臺(tái)發(fā)電機(jī)都能運(yùn)行,此時(shí),因此
由此得的概率分布列如下:
4500 | 10000 | |
0.2 | 0.8 |
所以,.
③當(dāng)安裝3臺(tái)發(fā)電機(jī)時(shí).此時(shí),
若,則只有1臺(tái)發(fā)電機(jī)運(yùn)行,此時(shí),因此
若,則有2臺(tái)發(fā)電機(jī)運(yùn)行,此時(shí),因此
若,則3臺(tái)發(fā)電機(jī)同時(shí)運(yùn)行,此時(shí),因此
由此得的概率分布列如下:
4000 | 9200 | 15000 | |
0.2 | 0.7 | 0.1 |
所以,
綜上,欲使水電站年凈利潤(rùn)最大,應(yīng)安裝發(fā)電機(jī)2臺(tái).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十五巧板,又稱益智圖,為清朝浙江省德清知縣童葉庚在同治年間所發(fā)明,它能拼出草木、花果、鳥獸、魚蟲、文字等圖案.十五巧板由十五塊板組成一個(gè)大正方形(如圖1),其中標(biāo)號(hào)為的小板為等腰直角三角形,圖是用十五巧板拼出的2019年生肖豬的圖案,則從生肖豬圖案中任取一點(diǎn),該點(diǎn)恰好取自陰影部分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)中,,.若點(diǎn)為的中點(diǎn),點(diǎn)為靠近點(diǎn)的四等分點(diǎn).
(1)求證:平面;
(2)若三棱臺(tái)的體積為,求三棱錐的體積.
注:臺(tái)體體積公式:,或在分別為臺(tái)體上下底面積,為臺(tái)體的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中,底面為直角梯形,,,,,,為的中點(diǎn),平面平面,為上一點(diǎn),平面.
(1)求證:平面平面;
(2)若與底面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】PM2.5是衡量空氣質(zhì)量的重要指標(biāo),我國(guó)采用世衛(wèi)組織的最寬值限定值,即PM2.5日均值在以下空氣質(zhì)量為一級(jí),在空氣質(zhì)量為二級(jí),超過為超標(biāo),如圖是某地1月1日至10日的PM2.5(單位:)的日均值,則下列說(shuō)法正確的是( )
A.10天中PM2.5日均值最低的是1月3日
B.從1日到6日PM2.5日均值逐漸升高
C.這10天中恰有5天空氣質(zhì)量不超標(biāo)
D.這10天中PM2.5日均值的中位數(shù)是43
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且在[0,+∞)上單調(diào)遞減,f(2)=0,則不等式f(log2x)>0的解集為( )
A.(,4)B.(2,2)C.(,+∞)D.(4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P﹣ABCD中,平面PAC⊥平面ABCD,且有AB∥DC,AC=CD=DAAB.
(1)證明:BC⊥PA;
(2)若PA=PC=AC,求平面PAD與平面PBC所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(文)(2017·開封二模)為備戰(zhàn)某次運(yùn)動(dòng)會(huì),某市體育局組建了一個(gè)由4個(gè)男運(yùn)動(dòng)員和2個(gè)女運(yùn)動(dòng)員組成的6人代表隊(duì)并進(jìn)行備戰(zhàn)訓(xùn)練.
(1)經(jīng)過備戰(zhàn)訓(xùn)練,從6人中隨機(jī)選出2人進(jìn)行成果檢驗(yàn),求選出的2人中至少有1個(gè)女運(yùn)動(dòng)員的概率.
(2)檢驗(yàn)結(jié)束后,甲、乙兩名運(yùn)動(dòng)員的成績(jī)用莖葉圖表示如圖:
計(jì)算說(shuō)明哪位運(yùn)動(dòng)員的成績(jī)更穩(wěn)定.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若,求的極坐標(biāo)方程;
(2)若與恰有4個(gè)公共點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com