【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(θ為參數(shù)),以原點為極點,x軸非負半軸為極軸,建立極坐標系,曲線C2的極坐標方程為.
(1)求曲線C1的極坐標方程以及曲線C2的直角坐標方程;
(2)若直線l:y=kx與曲線C1、曲線C2在第一象限交于P、Q,且|OQ|=|PQ|,點M的直角坐標為(1,0),求△PMQ的面積.
【答案】(1)ρ=4cosθ;(2).
【解析】
(1)直接利用轉(zhuǎn)換關(guān)系的應(yīng)用,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉(zhuǎn)換.
(2)利用極徑的應(yīng)用和三角函數(shù)關(guān)系式的恒等變換的應(yīng)用及面積公式的應(yīng)用求出結(jié)果.
(1)曲線C1的參數(shù)方程為(θ為參數(shù)),轉(zhuǎn)換為直角坐標方程為x2+y2﹣4x=0,轉(zhuǎn)換為極坐標方程為ρ=4cosθ.
曲線C2的極坐標方程為.轉(zhuǎn)換為直角坐標方程為.
(2)直線l:y=kx轉(zhuǎn)換為極坐標方程為θ=θ0,代入,解得.
代入ρ=4cosθ,得到ρP=4cosθ0,
由于|OQ|=|PQ|,所以ρP=2ρQ,
故:,解得,,
所以,.
則.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|2x+2|,g(x)=|x+2|﹣|x﹣2a|+a.
(1)求不等式f(x)>4的解集;
(2)對x1∈R,x2∈R,使得f(x1)≥g(x2)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:(a>b>0)過點E(,1),其左、右頂點分別為A,B,左、右焦點為F1,F2,其中F1(,0).
(1)求橢圓C的方程:
(2)設(shè)M(x0,y0)為橢圓C上異于A,B兩點的任意一點,MN⊥AB于點N,直線l:x0x+2y0y﹣4=0,設(shè)過點A與x軸垂直的直線與直線l交于點P,證明:直線BP經(jīng)過線段MN的中點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log3(ax+b)的圖象經(jīng)過點A(2,1)和B(5,2),an=an+b(n∈N*).
(1)求{an};
(2)設(shè)數(shù)列{an}的前n項和為Sn,bn,求{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場為迎接“618年中慶典,擬推出促銷活動,活動規(guī)則如下:①活動期間凡在商場內(nèi)購物,每滿673元可參與一次現(xiàn)金紅包抽獎,且互不影響,詳細如下表:
獎項 | 一等獎 | 二等獎 |
獎金 | 200元現(xiàn)金紅包 | 優(yōu)惠餐券1張(價值50元) |
獲獎率 | 30% | 70% |
②活動期間凡在商場內(nèi)購物,每滿2019元可參與消費返現(xiàn),返現(xiàn)金額為實際消費金額的15%.規(guī)定每位顧客只可選擇參加其中一種優(yōu)惠活動.
(1)現(xiàn)有顧客甲在商場消費2019元,若其選擇參與抽獎,求其可以獲得現(xiàn)金紅包的概率.
(2)現(xiàn)有100名消費金額為2019元的顧客正在等待抽獎,假如你是該商場的活動策劃人,你更希望顧客參與哪項優(yōu)惠活動?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列的前項和為,已知,,成等差數(shù)列,且,.
(1)求數(shù)列的通項公式;
(2)記,,證明:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com