若曲線f(x)=sinx+1在x=π處的切線與直線ax+2y+1=0相互垂直,則實數(shù)a等于( 。
A、2B、1C、-1D、-2
考點:利用導數(shù)研究曲線上某點切線方程
專題:導數(shù)的綜合應用
分析:求出原函數(shù)的導函數(shù),得到曲線f(x)=sinx+1在x=π處的切線的導數(shù),由相互垂直的兩直線的斜率的關(guān)系求得實數(shù)a的值.
解答: 解:由f(x)=sinx+1,得:
f′(x)=cosx,
∴f′(π)=-1,
即曲線f(x)=sinx+1在x=π處的切線的斜率為-1.
又曲線f(x)=sinx+1在x=π處的切線與直線ax+2y+1=0相互垂直,
∴-1×(-
a
2
)=-1,解得a=-2.
故選:D.
點評:本題考查了利用導數(shù)研究曲線上某點處的切線方程,考查了過曲線上某點的切線的斜率的求法,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一個物體的運動方程為s=1-t+2t2其中s的單位是米,t的單位是秒,那么物體在3秒末的瞬時速度是( 。
A、9米/秒B、10米/秒
C、11米/秒D、12米/秒

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A、B、C三點不共線,D為BC的中點,對于平面ABC內(nèi)任意一點O都有
OP
=2
OA
-
1
2
OB
-
1
2
OC
,則( 。
A、
AP
=
AD
B、
PA
=
PD
C、
DP
=
DA
D、
PA
=
AD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,D、E、F分別是邊AB、BC、CA上的中點,則
DE
+
DA
-
BE
=( 。
A、
0
B、
BC
C、
BE
D、
AF

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-x3+3x的單調(diào)增區(qū)間為( 。
A、RB、(0,+∞)
C、(-1,1)D、(-∞,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,是奇函數(shù)的是( 。
A、y=xcosx
B、y=sin|x|
C、y=sinx+1
D、y=|sinx|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙兩隊進行排球比賽,已知在一局比賽中甲隊獲勝的概率是
2
3
,沒有平局.若采用三局兩勝制比賽,即先勝兩局者獲勝且比賽結(jié)束,則甲隊獲勝的概率等于( 。
A、
4
9
B、
20
27
C、
8
27
D、
16
27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-ax在點A(2,f(2))處的切線l的斜率為
3
2

(Ⅰ)求實數(shù)a的值;
(Ⅱ)證明:函數(shù)f(x)的圖象恒在直線l的下方(點A除外);
(Ⅲ)設點P(x1,f(x1)),Q(x2,f(x2)),當x2>x1>1時,直線PQ的斜率恒大于k,試求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+3x|x-2|+1,a∈R.
(Ⅰ)當a=0時,求y=f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當a>0時,若函數(shù)y=f(x)不存在極值,求a的取值范圍.

查看答案和解析>>

同步練習冊答案