【題目】已知函數(shù)f(x)=|x﹣1|﹣2|x+1|的最大值為k.
(1)求k的值;
(2)若a,b,c∈R, ,求b(a+c)的最大值.
【答案】
(1)解:由于f(x)= ,
當x≥﹣1時,f(x)max=f(1)=1﹣3=﹣4,
當﹣1<x<1時,f(x)<f(﹣1)=3﹣1=2,
當x≤﹣1時,f(x)max=f(﹣1)=﹣1+3=2,
所以k=f(x)max=f(﹣1)=2
(2)解:由已知 ,有(a2+b2)+(b2+c2)=4,
因為a2+b2≥2ab(當a=b取等號),b2+c2≥2bc(當b=c取等號),
所以(a2+b2)+(b2+c2)=4≥2(ab+bc),即ab+bc≤2,
故[b(a+c)]max=2
【解析】(1)根據(jù)分段函數(shù)的單調(diào)性求出函數(shù)的最大值,即可求出k的值,(2)根據(jù)基本不等式即可求出答案
【考點精析】根據(jù)題目的已知條件,利用絕對值不等式的解法的相關知識可以得到問題的答案,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(1﹣m)lnx+ ﹣x,m∈R且m≠0.
(Ⅰ)當m=2時,令g(x)=f(x)+log2(3k﹣1),k為常數(shù),求函數(shù)y=g(x)的零點的個數(shù);
(Ⅱ)若不等式f(x)>1﹣ 在x∈[1,+∞)上恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高中組織數(shù)學知識競賽,采取答題闖關的形式,分兩種題型,每種題型設兩關.“數(shù)學文化”題答對一道得5分,“數(shù)學應用”題答對一道得10分,答對一道題即可進入下一關,否則終止比賽.有甲、乙、丙三人前來參賽,設三人答對每道題的概率分別是 、 、 ,三人答題互不影響.甲、乙選擇“數(shù)學文化”題,丙選擇“數(shù)學應用”題.
(Ⅰ)求乙、丙兩人所得分數(shù)相等的概率;
(Ⅱ)設甲、丙兩人所得分數(shù)之和為隨機變量X,求X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為研究男女同學空間想象能力的差異,孫老師從高一年級隨機選取了20名男生、20名女生,進行空間圖形識別測試,得到成績莖葉圖如下,假定成績大于等于80分的同學為“空間想象能力突出”,低于80分的同學為“空間想象能力正!保
(1)完成下面2×2列聯(lián)表,
空間想象能力突出 | 空間想象能力正常 | 合計 | |
男生 |
|
| |
女生 |
| ||
合計 |
|
(2)判斷是否有90%的把握認為“空間想象能力突出”與性別有關;
(3)從“空間想象能力突出”的同學中隨機選取男生2名、女生2名,記其中成績超過90分的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望. 下面公式及臨界值表僅供參考:
P(X2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確命題的個數(shù)是 ①對于命題p:x∈R,使得x2+x+1<0,則p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③設ξ~B(n,p),已知Eξ=3,Dξ= ,則n與p值分別為12,
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機對50名家用轎車駕駛員進行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過100km/h的有20人,不超過100km/h的有10人.在20名女性駕駛員中,平均車速超過100km/h的有5人,不超過100km/h的有15人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認為平均車速超過100km/h的人與性別有關;
平均車速超過100km/h人數(shù) | 平均車速不超過100km/h人數(shù) | 合計 | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計 | |||
(Ⅱ)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為女性且車速不超過100km/h的車輛數(shù)為ζ,若每次抽取的結(jié)果是相互獨立的,求ζ的分布列和數(shù)學期望.
參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0) | 0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,已知橢圓 的左焦點為F,離心率為 ,過點F且垂直于長軸的弦長為 .
(I)求橢圓C的標準方程;
(Ⅱ)設點A,B分別是橢圓的左、右頂點,若過點P(﹣2,0)的直線與橢圓相交于不同兩點M,N.
(i)求證:∠AFM=∠BFN;
(ii)求△MNF面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x,函數(shù)f(x)的圖象在x=0處的切線方程是;函數(shù)f(x)在區(qū)間[0,2]內(nèi)的值域是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com