數(shù)學試題中有12道單項選擇題,每題有4個選項。某人對每道題都隨機選其
中一個答案(每個選項被選出的可能性相同),求答對多少題的概率最大?并求出此種情況下概
率的大小.(可保留運算式子)

答對3道題的概率最大,此概率為:

解析試題分析:解:設X為答對題的個數(shù),則X~B(12,),
設P(X=k)最大,(k=1、2、……、12)
  ,  解得, 所以k=3       7分
所以答對3道題的概率最大,此概率為:    12分
考點:二項分布
點評:主要是考查了獨立重復試驗的概率的求解,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某聯(lián)歡晚會舉行抽獎活動,舉辦方設置了甲.乙兩種抽獎方案,方案甲的中獎率為,中將可以獲得2分;方案乙的中獎率為,中將可以得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中將與否互不影響,晚會結束后憑分數(shù)兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為,求的概率;
(2)若小明.小紅兩人都選擇方案甲或方案乙進行抽獎,問:他們選擇何種方案抽獎,累計的得分的數(shù)學期望較大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2013年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質量標準》.其中規(guī)定:居民區(qū)的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米. 某城市環(huán)保部門隨機抽取了一居民區(qū)去年20天PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:

組別
PM2.5濃度
(微克/立方米)
頻數(shù)(天)
頻率
 第一組
(0,25]
5
0.25
第二組
(25,50]
10
0.5
第三組
(50,75]
3
0.15
第四組
(75,100)
2
0.1
(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;
(Ⅱ)求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質量標準》。其中規(guī)定:居民區(qū)的PM2.5(大氣中直徑小于或等于2.5微米的顆粒物)年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米。某城市環(huán)保部門隨機抽取了一居民區(qū)去年20天PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:

組別
PM2.5濃度
(微克/立方米
頻數(shù)(天)
頻率
第一組
(0,25]
5
0.25
第二組
(25,50]
10
0.5
第三組
(50,75]
3
0.15
第四組
(75,100)
2
0.1
(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;
(Ⅱ)求樣本平均數(shù),并根據(jù)用樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某學校籃球隊、羽毛球隊、乒乓球隊的某些隊員不止參加了一支球隊,具體情況如圖所示,現(xiàn)從中隨機抽取一名隊員,求:

(1)該隊員只屬于一支球隊的概率;
(2)該隊員最多屬于兩支球隊的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在人群流量較大的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢。
(1)摸出的3個球為白球的概率是多少?  
(2)摸出的3個球為2個黃球1個白球的概率是多少?
(3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

四名教師被分到甲、乙、丙三所學校參加工作,每所學校至少一名教師.
(Ⅰ)求、兩名教師被同時分配到甲學校的概率;
(Ⅱ)求、兩名教師不在同一學校的概率;
(Ⅲ)設隨機變量為這四名教師中分配到甲學校的人數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在盒子里有大小相同,僅顏色不同的乒乓球共10個,其中紅球5個,白球3個,藍球2個,F(xiàn)從盒子中每次任意取出一個球,若取出的是藍球則結束,若取出的不是藍球則將其放回箱中,并繼續(xù)從箱中任意取出一個球,但取球次數(shù)最多不超過3次。求:
(1)取兩次就結束的概率;
(2)正好取到2個白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在一個盒子中,放有標號分別為,的三個小球,現(xiàn)從這個盒子中,有放回地先后抽得兩個小球的標號分別為、,設為坐標原點,設的坐標為.
(1)求的所有取值之和;
(2)求事件“取得最大值”的概率.

查看答案和解析>>

同步練習冊答案