在平面直角坐標系中,點在角α的終邊上,點Q(sin2θ,-1)在角β的終邊上,且
(1)求cos2θ;
(2)求sin(α+β)的值.
【答案】分析:(1)由點P、Q的坐標即坐標,結(jié)合向量數(shù)量積坐標運算公式得θ的三角函數(shù)等式,再利用余弦的倍角公式把此等式降冪即可;
(2)首先由余弦的倍角公式求出cos2θ,再根據(jù)同角正余弦的關(guān)系式求出sin2θ,即明確點P、Q的坐標,然后由三角函數(shù)定義得sinα、cosα、sinβ、cosβ的值,最后利用正弦的和角公式求得答案.
解答:解:(1)∵
,


(2)由(1)得:,
,,
,
,,,

點評:本題綜合考查倍角公式、和角公式、同角三角函數(shù)關(guān)系、及三角函數(shù)定義,同時考查向量坐標的定義及向量數(shù)量積坐標運算.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當且僅當l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,下列函數(shù)圖象關(guān)于原點對稱的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習冊答案