右面的偽代碼的目的是:求出使12+22+32+…+n2<1000成立的最大正整數(shù)n,則在圖中輸出語(yǔ)句①處應(yīng)填入    
【答案】分析:先假設(shè)最大正整數(shù)n使12+22+32+…+n2<1000成立,然后利用偽代碼進(jìn)行推理出最后n的值,從而得到我們需要輸出的結(jié)果.
解答:解:假設(shè)最大正整數(shù)n使12+22+32+…+n2<1000成立
此時(shí)的n滿足S<1000,則語(yǔ)句S=S+n2,n=n+1繼續(xù)運(yùn)行
此時(shí)n=n+2,屬于圖中輸出語(yǔ)句①處應(yīng)填入n-2
故答案為n-2
點(diǎn)評(píng):本題主要考查了當(dāng)型循環(huán)語(yǔ)句,以及偽代碼,算法在近兩年高考中每年都以小題的形式出現(xiàn),基本上是低起點(diǎn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、右面的偽代碼的目的是:求出使12+22+32+…+n2<1000成立的最大正整數(shù)n,則在圖中輸出語(yǔ)句①處應(yīng)填入
n-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省連云港市灌云高級(jí)中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

右面的偽代碼的目的是:求出使12+22+32+…+n2<1000成立的最大正整數(shù)n,則在圖中輸出語(yǔ)句①處應(yīng)填入    

查看答案和解析>>

同步練習(xí)冊(cè)答案