已知
k
0
是矩陣A=
1   0
m  2
的一個特征向量.
(Ⅰ)求m的值和向量
k
0
相應的特征值;
(Ⅱ)若矩陣B=
3  2
2  1
,求矩陣B-1A.
考點:逆矩陣的意義,矩陣特征值的定義
專題:矩陣和變換
分析:(Ⅰ)設出特征值,根據(jù)矩陣與列向量的乘積,列出方程組求解即可;
(Ⅱ)首先求出|B|,然后求出B-1,最后根據(jù)矩陣相乘的方法,求出陣B-1A即可.
解答: 解:(Ⅰ)根據(jù)題意,可知存在實數(shù)λ(λ≠0),
使得
1   0
m  2
k
0
k
0
,
k=λk
mk=0
,
又因為k≠0,所以
λ=1
m=0

所以m=0,特征向量
k
0
相應的特征值為1;
(Ⅱ)因為|B|=3×1-2×2=-1,
所以B-1=
-12
2-3
,
因此陣B-1A=
-12
2-3
10
02
=
-14
2-6
點評:本題主要考查矩陣的性質(zhì)和應用、特征值的計算,考查了矩陣的乘法、逆矩陣的求法,解題時要特別注意特征值與特征向量的計算公式的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C的兩個焦點分別為F1(-1,0)、F2(1,0),短軸長為2.
(1)求橢圓C的方程;
(2)過點F2的直線l與橢圓C相交于P,Q兩點,且
F1P
F1Q
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在乒乓球比賽中,甲與乙以“五局三勝”制進行比賽,根據(jù)以往比賽情況,甲在每一局勝乙的概率均為
3
5
.已知比賽中,乙先贏了第一局,求:
(1)甲在這種情況下取勝的概率;
(2)設比賽局數(shù)為X,求X的分布列及數(shù)學期望(均用分數(shù)作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知曲線C的參數(shù)方程是
y=sinθ-2
x=cosθ
(θ是參數(shù)),若以O為極點,x軸的正半軸為極軸,則曲線C的極坐標方程可寫為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱長為a的正方體ABCD-A1B1C1D1中,M、N分別為A1B1,CC1的中點.
(1)求B到平面AMN的距離
(2)求二面角B-AM-N的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:α為銳角,sinα=k,cosα=
3
k,求出k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項均為正數(shù)的數(shù)列{an},其前n項和為Sn,且滿足4Sn=(an+1)2
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{bn}滿足:b1=3,bn+1=abn,記cn=anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an=logn+1(n+2)(n∈N*),若正整數(shù)k滿足a1a2…ak為整數(shù),則稱k為“馬數(shù)”,那么,在區(qū)間[1,2014]內(nèi)所有的“馬數(shù)”之和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若光線從點A(-3,5)射到x軸上,經(jīng)反射以后經(jīng)過點B(2,10),則光線A到B的距離為
 

查看答案和解析>>

同步練習冊答案