18.執(zhí)行如圖所示的程序框圖,則輸出的“S+n”的值為( 。
A.-21B.-20C.-19D.-18

分析 模擬執(zhí)行程序框圖的運(yùn)行過程,即可得出程序運(yùn)行后輸出的“S+n”值.

解答 解:當(dāng)S=98時(shí),n=2,
當(dāng)S=94時(shí),n=3,
當(dāng)S=86時(shí),n=4,
當(dāng)S=70時(shí),n=5,
當(dāng)S=38時(shí),n=6,
當(dāng)S=-26時(shí),n=7;
此時(shí)退出循環(huán),
故輸出的“S+n”的值為-26+7=-19.
故選:C.

點(diǎn)評(píng) 本題考查了程序框圖的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$\overrightarrow a$,$\overrightarrow b$是兩個(gè)相互垂直的單位向量,而|$\overrightarrow c$|=13,$\overrightarrow c$•$\overrightarrow a$=3,$\overrightarrow c$•$\overrightarrow b$=4,則對(duì)于任意實(shí)數(shù)t1,t2,則|$\overrightarrow c$-t1$\overrightarrow a-{t_2}$$\overrightarrow b$|的最小值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.化簡:tan70°sin80°($\sqrt{3}$tan20°-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.口袋中有n(n∈N*)個(gè)白球,3個(gè)紅球.依次從口袋中任取一球,如果取到紅球,那么繼續(xù)取球,且取出的紅球不放回;如果取到白球,就停止取球.記取球的次數(shù)為X.若P(X=2)=$\frac{7}{30}$,則n的值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)$\frac{2+3i}{3-2i}$=a+bi(a,b∈R,i為虛數(shù)單位),則ba=( 。
A.1B.-1C.0D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知拋物線C:y2=8x,點(diǎn)P為拋物線上任意一點(diǎn),過點(diǎn)P向圓D:x2+y2-4x+3=0作切線,切點(diǎn)分別為A,B,則四邊形PADB面積的最小值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖所示,求一個(gè)棱長為$\sqrt{2}$的正四面體的體積,可以看成一個(gè)棱長為1的正方體切去四個(gè)角后得到,類比這種分法,一個(gè)相對(duì)棱長都相等的四面體A-BCD,其三組棱長分別為AB=CD=$\sqrt{5}$,AD=BC=$\sqrt{13}$,AC=BD=$\sqrt{10}$,則此四面體的體積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}y≥x\\ x+y-6≤0\\ 2x-y-2≥0\end{array}\right.$,且z=2x+y的最小值為m,最大值為n,則f(x)=x2-14x在區(qū)間[m,n]上的最大值和最小值之和為( 。
A.-94B.-97C.-93D.-90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.拋物線y2=2px(p>0)上一點(diǎn)M(x0,8)到焦點(diǎn)的距離是10,則x0=( 。
A.1或8B.1或9C.2或8D.2或9

查看答案和解析>>

同步練習(xí)冊(cè)答案