分析 解當(dāng)q=1時(shí),2Sn+3Sn+2≠5Sn+1,因此q≠1.利用等比數(shù)列的求和公式代入化簡(jiǎn)即可得出.
解答 解:當(dāng)q=1時(shí),2Sn+3Sn+2=(5n+6)a1,5Sn+1=(5n+5)a1,
∵(5n+6)a1≠(5n+5)a1,
∴2Sn+3Sn+2≠5Sn+1,
因此q≠1.
∴$2×\frac{{a}_{1}(1-{q}^{n})}{1-q}$+3×$\frac{{a}_{1}(1-{q}^{n+2})}{1-q}$=5×$\frac{{a}_{1}(1-{q}^{n+1})}{1-q}$,化為:3q2-5q+2=0,q≠1,解得q=$\frac{2}{3}$.
∴an=${a}_{3}{q}^{n-3}$=$3×(\frac{2}{3})^{n-3}$.
故答案為:an=$3×(\frac{2}{3})^{n-3}$.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其求和公式,考查了分類(lèi)討論方法、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2.4 4 | B. | 6 2.4 | C. | 4 2.4 | D. | 6 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x0∈[0,$\frac{π}{2}$],sinx0+cosx0≥2 | B. | ?x∈(3,+∞),x2>2x+1 | ||
C. | ?x0∈R,x02+x0=-1 | D. | ?x∈R,tanx≥sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 4 | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com