命題:若x、y都是奇數(shù),則:x+y是偶數(shù).試寫出它的逆命題、否命題、逆否命題,并判斷真假.
分析:先把原命題改造成“若p則q”形式,再利用基本概念分別寫出其相應的逆命題、否命題、逆否命題.在判斷真假時要注意利用等價命題的原理和規(guī)律.
解答:解:逆命題:若x+y是偶數(shù),則:x、y都是奇數(shù),是假命題;
否命題:若x、y不都是奇數(shù),則:x+y不是偶數(shù),是假命題;
逆否命題:若x+y不是偶數(shù),則:x、y不都是奇數(shù),是真命題.
點評:本題考查四種命題的真假判斷,解題時要注意利用等價命題的原理和規(guī)律
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列命題是真命題的序號為:
③④⑤
③④⑤

①定義域為R的函數(shù)f(x),對?x∈R都有f(x-1)=f(1-x),則f(x-1)為偶函數(shù)
②定義在R上的函數(shù)y=f(x),若對?x∈R,都有f(x-5)+f(1-x)=2,則函數(shù)y=f(x)的圖象關于(-4,2)中心對稱
③函數(shù)f(x)的定義域為R,若f(x+1)與f(x-1)都是奇函數(shù),則f(x+1949)是奇函數(shù)
④函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的圖形一定是對稱中心在圖象上的中心對稱圖形.
⑤若函數(shù)f(x)=ax3+bx2+cx+d有兩不同極值點x1,x2,若|x2-x1|>|f(x2)-f(x1)|,且f(x1)=x1,則關于x的方程3a•[f(x)]2+2b•f(x)+c=0的不同實根個數(shù)必有三個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中
①當n=0時,冪函數(shù)y=xn的圖象是一條直線
②冪函數(shù)的圖象都經(jīng)過點(0,0),(1,1)
③冪函數(shù)的圖象不可能出現(xiàn)在第四象限
④若冪函數(shù)y=xn是奇函數(shù),則y=xn在其定義域上是增函數(shù)
⑤冪函數(shù)y=xn當n<0時,在第一象限內(nèi)函數(shù)值隨x值的增大而減小
其中正確的命題是
③⑤
③⑤
(將所選命題的序號均填在橫線上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出四個命題:
①函數(shù)y=sin|x|是周期函數(shù),且周期為2π;
②函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
③函數(shù)y=2cos(2x+
π
3
)
的圖象關于點(
π
12
,0)
對稱;
④△ABC中,若sinA,sinB,sinC成等差數(shù)列,則B∈(0,
π
3
],其中所有正確的序號是
②、③、④
②、③、④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于給定的以下四個命題,其中正確命題的個數(shù)為( 。
①函數(shù)f(x)=
x2-2x
x-2
是奇函數(shù);
②函數(shù)f(x)在(a,b)和(c,d)都是增函數(shù),若x1∈(a,b),x2∈(c,d),且x1<x2則一定有f(x1)<f(x2);
③函數(shù)f(x)在R上為奇函數(shù),且當x>0時有f(x)=
x
+1
,則當x<0,f(x)=-
-x
-1

④函數(shù)y=x+
1-2x
的值域為{y|y≤1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①如果復數(shù)z滿足|z+i|+|z-i|=2,則復數(shù)z在復平面上所對應點的軌跡是橢圓.
②設f(x)是定義在R上的函數(shù),且對任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
③已知曲線C:
x2
9
-
y2
16
=1
和兩定點E(-5,0)、F(5,0),若P(x,y)是C上的動點,則||PE|-|PF||<6.
④設定義在R上的兩個函數(shù)f(x)、g(x)都有最小值,且對任意的x∈R,命題“f(x)>0或g(x)>0”正確,則f(x)的最小值為正數(shù)或g(x)的最小值為正數(shù).
上述命題中錯誤的個數(shù)是( 。

查看答案和解析>>

同步練習冊答案