已知O為坐標原點,A(0,1),B(3,4),
OM
=t1
OA
+t2
AB

(1)求點M在第二象限或第三象限的充要條件;
(2)求證:當t1=1時,不論t2為何實數(shù),A、B、M三點都共線.
分析:(1)由條件可得
OM
=(3t2,t1+3t2),從而可得點M在第二象限或第三象限的充要條件為t2<0且t1+3t2≠0.
(2)由
OM
=t1
OA
+t2
AB
以及t1=1可得
OM
=(1-t2)•
OA
+t2
OB
,從而得到A、B、M三點共線.
解答:解:(1)由A(0,1),B(3,4),
OM
=t1
OA
+t2
AB
,可得
OM
=t1(0,1)+t2(3,3)
=(3t2,t1+3t2),
故點M在第二象限或第三象限的充要條件為t2<0且t1+3t2≠0.
(2)∵
OM
=t1
OA
+t2
AB
,
OM
=t1
OA
+t2(
OB
-
OA
)
=(t1-t2)
OA
+t2
OB
,t1=1,
OM
=(1-t2
OA
 )+t2
OB

∴A,B,M三點共線.
點評:本題主要考查充要條件的定義,兩個向量坐標形式的運算,三點共線的條件,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知O為坐標原點,A(0,2),B(4,6),
OM
=t1
OA
+t2
AB

(1)求點M在第二或第三象限的充要條件;
(2)求證:當t1=1時,不論t2為何實數(shù),A、B、M三點都共線;
(3)若t1=a2,求當
OM
AB
且△ABM的面積為12時,a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O為坐標原點,A,B是圓x2+y2=1分別在第一、四象限的兩個點,C(5,0)滿足:
OA
OC
=3
、
OB
OC
=4
,則
OA
+t
OB
+
OC
(t∈R)
模的最小值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O為坐標原點,A(0,2),B(4,6),
OM
=t1
OA
+t2
AB

(1)求證:當t1=1時,不論t2為何實數(shù),A、B、M三點都共線;
(2)若t1=a2,求當
OM
AB
且△ABM的面積為12時a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浙江二模)已知O為坐標原點,A(1,1),C(2,3)且2
AC
=
CB
,則
OB
的坐標是
(4,7)
(4,7)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O為坐標原點,A(0,1),B(3,4),
OM
=t1
OA
+t2
AB

(1)求點M在第二象限或第三象限的充要條件;
(2)求證:當t1=1時,不論t2為何實數(shù),A、B、M三點都共線;
(3)若t1=2,求當點M為∠AOB的平分線上點時t2的值.

查看答案和解析>>

同步練習冊答案