【題目】設(shè)函數(shù),已知曲線在點(diǎn)處的切線與直垂直.
(1)求的值;
(2)求函數(shù)的極值點(diǎn).
【答案】(1) ;(2)見解析.
【解析】
(1)對(duì)函數(shù)求導(dǎo),由曲線在點(diǎn)處的切線與直垂直,可知,即可求出;(2)求導(dǎo),然后分類討論,確定單調(diào)性,進(jìn)而可以求出極值點(diǎn)。
(1)由題意知,,,解得.
(2)函數(shù),定義域?yàn)?/span>,
則,令,,
則,
①當(dāng)時(shí),,有,即,所以在區(qū)間上單調(diào)遞減,故函數(shù)在區(qū)間上無極值點(diǎn);
②當(dāng)時(shí),,令,有,,,
當(dāng)時(shí),,即,得在上遞減,
當(dāng)時(shí),,即,得在上遞增,
當(dāng)時(shí),,即,得在上遞減,
此時(shí)有一個(gè)極小值點(diǎn)為,有一個(gè)極大值點(diǎn)為.
③當(dāng)時(shí),,令,有,,
當(dāng)時(shí),,即,得在上遞增,
當(dāng)時(shí),,即,得在上遞減,
此時(shí)有唯一的極大值點(diǎn)為.
綜上可知,當(dāng)時(shí),函數(shù)有一個(gè)極小值點(diǎn)為,有一個(gè)極大值點(diǎn)為;
當(dāng)時(shí),函數(shù)在區(qū)間上無極值點(diǎn);
當(dāng)時(shí),函數(shù)有唯一的極大值點(diǎn)為,無極小值點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足.
(1)若,證明:
(i)當(dāng)時(shí),有;
(ii)當(dāng)時(shí),有.
(2)若,證明:當(dāng)時(shí),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)觀眾對(duì)大型綜藝活動(dòng)《中國好聲音》的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對(duì)應(yīng)的人數(shù)表:
場數(shù) | 9 | 10 | 11 | 12 | 13 | 14 |
人數(shù) | 10 | 18 | 22 | 25 | 20 | 5 |
將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?
非歌迷 | 歌迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(2)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級(jí)歌迷”,已知“超級(jí)歌迷”中有2名女性,若從“超級(jí)歌迷”中任意選取2人,求至少有1名女性觀眾的概率.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
附:K2=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三角形中,邊和所在的直線方程分別為和,的中點(diǎn)為.
(1)求的坐標(biāo);
(2)求角的內(nèi)角平分線所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上兩人所得與下三人等。問各得幾何?”其意思是:“已知甲、乙、丙、丁、戊五人分五錢,甲、乙兩人所得之和與丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差數(shù)列。問五人各得多少錢?”(“錢”是古代的一種重量單位)。這個(gè)問題中,戊所得為( )
A. 錢 B. 錢 C. 錢 D. 錢
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點(diǎn),若為線段上的動(dòng)點(diǎn)(不含).
(1)平面與平面是否互相垂直?如果是,請(qǐng)證明;如果不是,請(qǐng)說明理由;
(2)求二面角的余弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為常數(shù),函數(shù)f(x)=x(lnx﹣1)﹣ax2,給出以下結(jié)論:(1)f(x)存在唯一零點(diǎn)與a的取值無關(guān);(2)若a=e﹣2,則f(x)存在唯一零點(diǎn);(3)若a<e﹣2,則f(x)存在兩個(gè)零點(diǎn).其中正確的個(gè)數(shù)是( )
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知等差數(shù)列{an}中,a1=1,a3=﹣3.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{an}的前k項(xiàng)和Sk=﹣35,求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com