直線與圓x2+y2=2相交于A,B兩點,O為原點,則=   
【答案】分析:先求圓心到直線的距離,再求弦心距所在直線與AO的夾角,然后求數(shù)量積.
解答:解:圓心到直線的距離:,則易知弦心距所在直線與AO的夾角是45°,則=
故答案為:0.
點評:把它看成直線與圓的位置關(guān)系,向量的數(shù)量積,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、過原點的直線與圓x2+y2-2x-4y+4=0相交所得的弦長為2,則該直線的方程為
2x-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)滿足
x+y≤4
y≥x
x≥1
,過點P的直線與圓x2+y2=14相交于A,B兩點,則|AB|的最小值為( 。
A、2
B、2
6
C、2
5
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過原點的直線與圓x2+y2+4x+3=0相切,若切點在第三象限,則該直線的方程是
y=
3
3
x
y=
3
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過原點的直線與圓x2+y2-6x+5=0相交于A、B兩點,求弦AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過A(1,1)可作兩條直線與圓x2+y2+kx-2y+
5
4
k=0
相切,則k的范圍為(  )

查看答案和解析>>

同步練習(xí)冊答案